保全技術一般 -

地震を受けた機器における 塑性ひずみ検出方法の適用について

日立 GE ニュークリア・エナジー(株)	米名	登 径	Yutaka KOMETANI
	伊東	夏 敬	Takashi ITO
	野中	善夫	Yoshio NONAKA
東京電力株式会社	高木	愛夫	Yoshio TAKAGI
	黒崎	裕一	Yuichi KUROSAKI
	羽鳥	正訓	Masanori HATORI

解説記事(保全技術一般)

1. はじめに

東京電力株式会社 柏崎刈羽原子力発電所は、2007 年7月16日に発生した中越沖地震により被災したが、 原子炉は安全に停止するとともに、耐震設計グレード の高い機器では外見上の損傷は認められなかった。ま た、7号機においては機器健全性の評価として地震時 に観測された水平方向及び鉛直方向の地震加速度を用 いた地震応答解析を行い、耐震設計グレードの高い機 器については発生する応力がいずれも評価基準値以下 であることが確認されている。しかし、観測された地 震波は設計時に想定された加速度を大きく上回るもの であり、地震により想定以上の大きな荷重が作用した 可能性がある。また、局所的な変形や表面近傍のみの 降伏、変形の復元等の可能性があり、外観の目視点検 では微小な変形が検出できない可能性もある。このた め、地震応答解析とともに機器の健全性評価および点 検結果の妥当性を確認することを目的として、予め計 画する追加点検(念のために実施する点検)としての塑 性ひずみ検出を行った。

本稿では、柏崎刈羽原子力発電所7号機の耐震設計 グレードの高い配管からサンプルを選定して実施した 塑性ひずみの検出における、検出手法の調査、手法選 定後のモックアップ確認及び現地測定結果について紹 介する。

2. 塑性ひずみ検出方法の調査・選定

塑性ひずみの検出方法については、原子力発電所施 設内での適用性を含めて検討する必要があるため、手 法候補の選定、性能・特性調査及び判定方法等の検討 を行った。原子力発電所内で据付状態のまま地震によ り機器が塑性変形を受けた履歴を評価可能と考えられ る方法、および、その概要を以下に示す。

- ① 材料表面の硬さから塑性ひずみを評価する方法 地震により塑性変形を受けた場合、塑性変形により 生じる加工硬化を検出することにより、塑性変形を 受けた履歴の有無を推定できる可能性がある。材料 表面の加工硬化を検出する手法として、反発式硬さ 計、ポータブルビッカース硬さ計および超音波硬さ 計などがある。
- 2 材料表面の組織変化から塑性ひずみを評価する方
 法

地震により塑性変形を受けた場合、塑性変形により 発生するリューダース帯やすべり線を観察すること により、塑性変形を受けた履歴の有無を推定できる 可能性がある。リューダース帯の観察は、目視で可能 であるが、地震時の表面が鏡面状態であることが前提 となる。また、すべり線の観察は、試験部表面を鏡面 に仕上げ、エッチングを行い、ポータブルタイプの光 学顕微鏡を用いて直接観察する方法と、試験部表面を レプリカに転写し、実験室の光学顕微鏡や走査型電子 顕微鏡を用いて観察を行なう方法がある。更に、塑性 ひずみによりエッチング速度が変化する特徴を利用し、 エッチングの色調を観察する方法がある。

- ③ 材料表面の相変態から塑性ひずみを評価する方法 地震により塑性変形を受けた場合、塑性変形で発生 するマルテンサイト変態を検出することで塑性変形 を受けた履歴の有無を推定できる可能性がある。材 料表面の相変態を検出する手法として、フェライト 測定法、渦電流探傷試験及びX線回折法などがある。
- ④ <u>材料表面の応力状態等から塑性ひずみを評価する</u> <u>方法</u>

地震により塑性変形を受けた場合、材料表面の格子 定数、磁気的特性あるいは超音波伝播特性などが変 化する可能性があり、これらの特性の変化を検出す

- 41 -

保全学 Vol.7, No.3 (2008)

ることで塑性変形を受けた履歴の有無を推定できる 可能性がある。材料表面の格子定数を測定する方法 として、ポータブルタイプのX線回折装置を用いた X線回折法がある。また、材料表面の磁気的特性あ るいは超音波伝播特性などの変化を検出する方法と して、磁歪法、バルクハウゼンノイズ法及び音速比 法などの方法がある。

以上の評価方法に対し、原子力発電所施設内の狭隘 な現場での作業性、市販製品レベルでの検出性能や特 徴、測定装置類の入手性等について机上での検討・評 価を行い、以下の測定方法を選定した。

- 表面金相
- マルテンサイト検出
- 音速比法
- 磁歪法
- ・ バルクハウゼンノイズ法

また、これらの方法に対して、塑性ひずみの検出限界、 測定範囲、測定精度及び対象材料間でのバラツキについ て評価を行うために、以下の特性を試験により確認した。

- 材料、測定位置の影響
- ・ 検出信号等と塑性ひずみとの相関
- ・ 検出信号等と塑性ひずみとの相関に及ぼす応力 状態の影響
- (1) 試験方法

各評価対象手法の特性確認のために、試験片材料と してフェライト鋼(炭素鋼(SS400)、低合金鋼)、オー ステナイト系ステンレス鋼(SUS304、SUS316L)を用いた 確認試験を行った。確認試験としては、各材料の試験 片に対して予め段階的に変化させた塑性ひずみを与え、 各測定方法により得られた信号等に塑性ひずみと相関 があること及び応力状態による影響有無の確認を行っ た。試験状況の例を図1に示す。

図1 塑性ひずみ検出確認試験状況(硬さ測定)

(2) 試験結果及び適用性検討結果

各評価対象手法の確認試験結果から、硬さ測定につ いては試験実施材料全てに塑性ひずみと相関関係が確 認された。また、音速比法(垂直法)についてフェラ イト鋼に対して信号の変化が確認された。一方、オー ステナイト系ステンレス鋼に対するマルテンサイト検 出法、音速比法及びバルクハウゼンノイズ法、フェラ イト鋼に対する音速比法(表面波法)、磁歪法及びバル クハウゼンノイズ法については、塑性ひずみの変化に 対して出力信号の変化は確認できたが、塑性ひずみと の相関が確認できず識別不能であった。また、表面金 相・レプリカ法では試験範囲では明確な変化が認めら れなかった。以上の試験結果を表1に示す。

		フェライト鋼 (炭素鋼、低合金鋼)	オーステナイト系ステンレス鋼 (SUS304、SUS316L)	
硬さ測定		Ø	Ø	
表面金相・表面レプリン法		×	×	
マルテンサイト検出法		_	Δ	
音速比法	垂直法	0	Δ	
	表面波法	Δ	Δ	
磁歪法		Δ	_	
バルクハウゼンノイズ法		Δ	Δ	

表1	適用性検討結果まと	め表
----	-----------	----

◎:塑性ひずみとの相関を確認

〇:信号の変化が確認できる

△:信号の変化が確認できる

(塑性ひずみの検出には検討を要する)

×:試験範囲では明確な変化が認められなかった

上記試験結果より、塑性ひずみの発生有無の調査に は、塑性ひずみとの相関関係が確認された表面硬さ測 定が有効と考えられ、現場での測定方法としては、硬 さ測定を基本として、フェライト鋼のみ補助的に音速 比法を使用することが有効と考えた。

なお、機器表面の硬さ測定については、ビッカース 硬さ計で測定した値を真値とした場合に、ポータブル ビッカース硬さ計にて測定した値が反発式硬さ計で測 定した値よりも真値に近いことを確認した。従って、 現地における地震による塑性ひずみ検出には、定量測 定に適したポータブルビッカース硬さ計(押付け力: 49N(5kg·f))を用いることとする。

上記の試験結果の例として、図3にポータブルビッ カース硬さ計による塑性ひずみの測定結果、図4に音 速比法(垂直法)による測定結果(例)、および、図5 にバルクハウゼンノイズ法による測定結果(例)を示す。

- 42 -

解説記事 (保全技術一般)

図5バルクハウゼンノイズ法による塑性ひずみ測定結果(例)

ポータブルビッカース硬さ計による測定については、 他の硬さ計に比べて大型で重いことから、原子力発電 所の狭隘な作業環境に必ずしも適したものではないが、 現地での測定作業時に必要となる測定方向について、 上向き、横向き等、下向きの測定以外でも測定値に影 響ないことも確認できている。したがって、ポータブ ルビッカース硬さ計は、現地での安定した測定結果を 得ることが可能な手法であると考えられる。

一方で、試験片が同一材料種別でもロットの違いに より硬さの測定結果に違いが生じることが確認された ため、発電所における実機配管等の硬さ測定において は、同一鋼種での測定においても素材の加工履歴の影 響により測定結果にバラツキが大きくなり、評価困難 となる事象が想定される。また、試験片の形状は平板 であり、実機での配管表面等の曲面においても同等な 結果が得られることを確認しておくため、配管を使用 してのモックアップ試験を行うこととした。

3. 配管によるモックアップ試験

硬さ測定において測定対象の製造方法の相違及び測 定対象部表面形状(曲面等)の影響による測定値の信 頼性確認のため、実規模模擬配管及び現地発電所の実 機配管を用いたモックアップ試験を実施した。

実規模の模擬配管を用いたモックアップには測定対 象として製造方法の異なる2種類の100A~500 A配管のエルボ部周辺での硬さ測定を実施した。試験 結果として以下の状況が確認された。

- 同一配管でもエルボ部と直管部では測定結果が 大きく異なることが確認された。
- ② 100A配管のエルボ部での測定結果が位置に依らず同等であることから、表面形状(曲面等)の 影響は小さいと考えられる。
- ③ 同一配管の直管部分では測定位置に依らず広い 範囲で硬さが均一と考えられる。
- ④ 同一配管でも高周波誘導加熱+曲げにより形成 されたエルボ部はその加工履歴の影響により相 対的に測定値のバラツキが大きく評価困難とな ることが確認された。

また、実機配管を用いたモックアップ試験において も実規模の模擬配管によるモックアップ試験結果と同 様に、高周波誘導加熱+曲げにより形成されたエルボ 部は相対的に測定値のバラツキが大きく評価困難とな

- 43 -

ることが確認された。

上記にて実施した実規模の模擬配管及び現地での実 機配管を用いたモックアップ試験により、硬さ測定の 手順を以下のように実施することで安定的な測定が行 える見通しを得た。

<硬さ測定の手順>

- 配管材の表面加工硬化層を取除き素材の硬さ測 定を可能とするために表面研磨を行う。
- ② その後、試硬さ測定により研磨状態の確認を行いながら、#400 番手までの研磨を実施し、硬さ測定を行う。
- ③ 硬さの測定は測定ポイント1箇所について40点 のデータを採取し、平均値をその測定ポイント の硬さ値として取扱うこととする。

4. 実機でのひずみ検出対象の選定

中越沖地震を受けた後の柏崎刈羽原子力発電所7号 機において、耐震設計グレードの高い機器については 地震時の記録に基づく応答解析において、許容値を超 える応力は発生しない結果が得られている。しかし、 設備健全性の確認として、耐震設計のグレードの高い 機器・配管に対して予め計画する追加点検(念のため実 施する点検)として目視、浸透探傷試験、及び、超音波 探傷試験の実施が検討され、合わせて、硬さ測定によ る塑性ひずみの検出確認を実施することとした。

(1) 硬さ測定による塑性ひずみ検出対象選定の条件

硬さ測定による塑性ひずみの検出確認は、サンプル 調査対象として選定された12系統の配管系統から、以 下の条件にて選定された系統の配管に対して実施する こととした。

- 選定された 12 系統の配管の内、地震応答解析に て求められた応力の裕度が小さくなる系統を含 める
- ② 配管素材が炭素鋼とステンレス鋼を各1系統以 上とする
- ③ 建屋間を渡る系統を含める
- ④ 硬さ測定等の作業が実施可能な環境が得られる
 こと。(周囲の放射線環境が適切であること等)

(2) 硬さ測定による塑性ひずみ検出対象配管系統 サンプル調査対象として選定された 12 系統の配管

から、前述の条件にて選定された系統の配管及び材質を表2に示す。

表2 塑性ひずみ測定対象配管系統及び材質

No.	系統名	配管材質	
1	主蒸気系	STS480 SFVC2B	
2	原子炉隔離時冷却系	STPT410	
3	ほう酸水注入系	SUS304TP	
4	非常用ガス処理系	STPT410	

選定された配管系統については、評価試験にて実施 した材料に対し、STS480、STPT410 等の配管材料が加 わることから、各材質の配管材から切出した試験片に より、評価試験同様に塑性ひずみと硬さ測定結果に相 関があることを確認した。ポータブルビッカース硬さ 計による塑性ひずみの測定結果を図6に示す。

図6 配管材料に対するポータブルビッカース硬さ計に よる塑性ひずみ測定結果

(3) 硬さ測定による塑性ひずみ検出対象箇所の選定

現地配管に対する硬さ測定については、検出対象と なる配管の据付完了時点での硬さに関する初期データ が無いため、地震による塑性ひずみ検出のための比較 基準となるデータは存在しない。

一方、実規模の模擬配管によるモックアップ試験に おいて同一配管の直管部では広い範囲で硬さが均一と なることが確認されている。

このため、現地配管に対する地震応答解析における 応力裕度の小さな点を地震による有意な塑性ひずみの 検出対象箇所とする「評価部」として取扱い、応力の 裕度が評価部に比較して大きくなる点では塑性ひずみ の発生可能性は低いと考え、塑性ひずみの「評価部」 に対する「比較部」として取扱うことで、それぞれの 硬さ測定値の比較から、地震による有意な塑性ひずみ の検出が可能となると考えた。

- 44 -

解説記事(保全技術一般)

硬さ測定値の比較において、地震による塑性ひずみ が生じた場合、硬くなる(最大値が大きくなる)、軟 らかい箇所が先に硬化する(最小値が大きくなる)、 また、硬さのばらつき(最大値と最小値の硬度差)に 変化が生じることが考えられる。このため、塑性ひず み検出対象箇所における評価では、評価部と比較部の 最大値の比較、及び、最小値の比較、また、最大値と 最小値の差(硬度差)の比較を行い、評価部における それぞれの値が小さい場合には有意な塑性ひずみが生 じていないと考えられる。

なお、有意な塑性ひずみの検出に関する評価におい ては、測定結果のみでなく、測定のばらつき、製造履 歴の影響、材料の不均一性等の可能性を考慮し総合的 な評価を行う。

5. 現地配管に対する測定の実施結果と評価

(1) 主蒸気系配管における測定結果

主蒸気系配管の硬さ測定による塑性ひずみ検出の評価部はティー部を選定した。本ティー部については、 管台部と母管で材料が異なることから、硬さ測定値による塑性ひずみの発生有無の評価は各部(管台中央部 (管台 a)、管台下部(管台 b)、母管部)毎に実施した。 各部の測定点を図7に示す。

測定結果の例として、管台aの結果を図8に示す。また、表3に比較部・評価部の最大値、最小値、硬度差を示す。測定結果から、評価部の最大値(154)は比較部の最大値(162)より小さく、評価部の最小値(148)は比較部の最小値(151)より小さい。また、評価部の硬度差(6)は比較部の硬度差(11)より小さい。これらのことから、地震による有意な塑性ひずみは生じていないと評価する。

図7 主蒸気系配管(ティー部)の測定点

表3 管台aの硬さ測定結果					
	(単位:HV5)				
	硬さ	比較部	評価部		
	最大値	162	154		
	最小値	151	148		
	差	11	6		
1					

(各測定箇所40点の標準偏差:7~13)

(2)原子炉隔離時冷却系配管における測定結果 原子炉隔離時冷却系配管の硬さ測定による塑性ひず み検出の評価部は直管部(弁接続部)を選定した。表 4に比較部・評価部の最大値、最小値、硬度差を示す。

表4 原子炉隔離時冷却系配管の硬さ測定結果

-	(単	位:HV	5)
硬さ	比較部	評価部	
最大値	151	141	
最小値	121	128	
差	30	13	
各測定箇所40点の標準偏差:4~12)			

測定結果において、評価部の最大値(141)は比較部の 最大値(151)より小さく、評価部の硬度差(13)は比較部 の硬度差(30)より小さい。なお、評価部の最小値(128) は比較部の最小値(121)より大きいが、その差(7)は、ば らつき(標準偏差)以下であり、同等と考えられる。

また、比較部において、硬さのばらつきが大きかっ た事から、材料の不均一性の可能性を考慮し、周方向 同一角度で測定値の再評価を実施した(図9参照)。

同一角度における評価部と比較部の硬度差が少ない ことから、配管製造プロセスにより生じた周方向の硬 さ分布と推定され、地震による影響とは考え難いこと から、本対象部位において地震による有意な塑性ひず みは生じていないと評価する。

— 45 —

(3)ほう酸水注入系配管、並びに非常用ガス処理系配管 における測定結果

ほう酸水注入系配管、並びに非常用ガス処理系配管 の硬さ測定による塑性ひずみの検出評価部は直管部 (サポート部)を選定した。

各々の比較部・評価部の最大値、最小値、硬度差を表 5、表6に示す。

非常用ガス処理系では評価部の最大値が比較部の最 大値より大きくなったが、その差はばらつき(標準偏 差)以下であり、同等と考えられる。また、硬度差の 比較では、評価部が小さいか同等であった。なお、最 小値の比較では、どちらも評価部の最小値が比較部の 最小値よりが大きいが、その差はばらつき(標準偏差) 以下であるため、同等と考えられる。これらのことか ら、地震による有意な塑性ひずみは生じていないと評 価する。

以上の結果から、対象とした4系統の配管には地震 による有意な塑性ひずみが生じていないことを確認で きた。

表5 ほう酸水注入系配管の硬さ測定結果

	-		(単位:HV	V5)
	硬さ	比較部	評価部	
	最大値	183	181	
	最小值	173	176	
	差	10	5	
(各測定筒所40点の標準偏差:7~11)				

表6 非常用ガス処理系配管の硬さ測定結果

		<u>(単位:H</u>)	V5)	
硬さ	比較部	評価部		
最大値	158	161		
最小值	143	146		
差 15 15				
各測定箇所40点の標準偏差:5~8)				

(4) 座屈したろ過水タンクにおける測定結果

硬さ測定による塑性ひずみの検出性を確認するため に座屈により変形したろ過水タンクの変形した部位を 評価部、変形していない部位を比較部として測定を実 施した。図 10 に評価部の測定点の概略位置及び各測定 点の硬さ測定結果を示す。

図10 ろ過水タンク評価部の硬さ測定結果

座屈により変形した部位は、座屈していない部位と 比較し、硬さが最大 29HV 上昇している。そのため、地 震により大きな塑性ひずみが生じた可能性があること を確認できた。

6. まとめ

地震による塑性ひずみを検出する方法の検討を行い、 実機での作業性等を考慮した結果、硬さ測定が最も適 していると判断した。また、柏崎刈羽原子力発電所7 号機における予め計画する追加点検(念のため実施す る点検)として塑性ひずみの検出を硬さ測定により行 い、地震による有意な塑性ひずみが生じていないこと を確認した。

(平成20年9月8日)

- 46 -