多次元渦電流信号の活用によるき裂評価

Enhancement of Defect Sizing Ability by ECT Data Fusion

(一財)発電設備技術検査協会	程 衛英	Weiying CHENG	Member
(一財)発電設備技術検査協会	古川 敬	Takashi FURUKAWA	Member

Abstract.

The distribution of eddy current is disturbed in the presence of cracks. An equivalent solenoid model and a loop current model were proposed respectively to model the bypasses of eddy currents to the underside and longitudinal end of a crack. Eddy current testing signals were qualitatively analyzed by using the equivalent current models. Simulation showed that the signal due to the bypass of eddy current to the under side of a crack was appropriate for the evaluation of crack depth, and the signal due to the bypass of eddy current to the longitudinal end of a crack was appropriate for the crack length evaluation. The reliability of crack sizing is enhanced by using the fused signals.

Keywords: Eddy Current Testing, Sizing, Magnetic Field, Data Fusion

1. 緒言

渦電流探傷は、励磁コイルで試験体に渦電流を誘導さ せ、き裂が存在するとき渦電流の乱れが生じる磁束密度 変化を検出することにより、き裂の有無を判断し、また、 き裂の寸法を評価する手法である。

欠陥の検査に用いるプローブには、欠陥に対する高感 度とリフトオフ変動や材質の影響などへの低感度な性能 が要求される。また、欠陥の長さや深さ評価において、 深さや長さの変化に対応した信号成分の検出が求められ る[1]。本研究では、渦電流の流れと磁束分布に着目し、 ベクトル量の磁束密度の各成分信号、即ち、多次元信号 の活用により、き裂評価の信頼性を高めることを図る。

2. 渦電流の乱れ、等価電流モデル及び磁束密 度信号

2.1 渦電流の乱れと等価電流モデル

渦電流の乱れは励磁コイルと欠陥の相対関係によるも のである。渦電流の流れはき裂面と垂直な場合、き裂に よる渦電流の乱れは最も大きくなり、き裂の検出感度は 高い。き裂に阻まれた渦電流はき裂の周辺、主にはき裂 下面やき裂の側面へ回りこむ。ここでは、図1に示す一

連絡先: 程衛英、〒230-0044 横浜市鶴見区弁天町 14 -1、発電設備技術検査協会 溶接・非破壊検査技術 センター、E-mail: cheng-weiying@japeic.or.jp 様渦電流プローブを用いて、渦電流の乱れと等価電流モ デルを説明する。

図2は一様渦電流コイルが、欠陥長手中心上方に位置 しているときの渦電流変化の等価電流及びその磁界分布 の概念を示した図である。渦電流のき裂の下面へ回り込 みによる変化は等価ソレノイドコイル、また、渦電流の き裂の側面への回り込みによる変化は等価楕円ループ電 流で近似できる。渦電流探傷が計測するのは、等価ソレ ノイドコイルと楕円ループ上方の磁束密度である。

等価ソレノイドコイルが生じた磁束密度は欠陥長手方向(ここでは、Y方向)に平行であり、その方向を+Y と仮定する場合、コイル端部の磁束密度は-Y方向である。励磁コイルは欠陥長手中心上方に位置するとき、ソ レノイドコイルに流れる等価電流は最も大きいため、そ

図1 試験体、励磁コイル及び欠陥

(b) 欠陥側面への回りこみと等価ループ電流

れが生じた磁束密度のY成分信号は最も大きくなる。ソ レノイドコイルを構成する各リング電流はき裂下面へ回 り込む電流に対応しているため、この等価ソレノイドコ イルが生じた磁束密度は主にき裂の深さを反映すると考 えられる(図2(a))。

一方、渦電流のき裂端部へ回りこむによる変化は二つ 逆向きの電流ループで等価できる(図2(b))。励磁コイ ルは欠陥長手中心上方に位置しているとき、この二つの 電流ループは等しくなり、この二つ等しい且つ電流は逆 向きの等価電流ループによって、き裂長手中心上方の磁 束密度のZ方向成分は0になる。励磁コイルを欠陥長手 方向へ移動すると、二つの電流ループは等しくなくなり、 それらが作った磁束が合成され、励磁コイルがき裂の端 部に近いほど磁束密度のZ方向成分は大きくなる。また、 励磁コイルは欠陥長手端部の上方に位置すると、等価ル ープ電流は一個となり、信号は最も大きくなる。この信 号の大きさは楕円ループの長さ、近似的には欠陥の長さ、 に関係しており、欠陥長さをよく反映すると考えられる。 また、励磁コイルは欠陥長手の両端に位置するときの信 号は逆向きとなる。

2.2 各磁束密度成分信号と欠陥の長さ・深さ

ここでは、図1に示す一様渦電流プローブによるシミ ュレーションを用いて、前節に述べた定性的な分析に基 づいた欠陥長さ・深さと各磁束密度成分信号の関係を検 証する。

図3(a) に長さ15mm、幅0.2mm、深さをそれぞれ1mm、 4mm、6mm、8mm と変えたノッチからの磁束密度 Y 方

(a) 長さ15mm 欠陥の深さと信号の最大振幅値

(b) 深さ 4mm 欠陥の長さと信号の最大振幅値 図3 各磁束密度信号の最大振幅と欠陥の長さ・深さの関係

向成分(By)及びZ方向成分(Bz)信号の最大振幅値と 深さの関係を示す。図中横軸のΔは標準浸透深さを表記 する(導電率1Ms/m、比透磁率1、励磁周波数20kHz の場合、渦電流の標準浸透深さは約5mmである)。 欠 陥深さは標準浸透深さほどになると、Bz信号は飽和値の およそ70%になるに対し、By信号は飽和値のおよそ55% である。即ち、By信号は欠陥深さに対し飽和しにくく、 欠陥の深さサイジングに適している。なお、全ての信号 値は1mm深さ欠陥の最大振幅値を1にして校正したもの である。

図3(b)は深さ4mm、幅0.2mm、長さをそれぞれ5mm、10mm、15mm、20mmと変えたノッチの信号最大振幅値と長さとの関係を示す(励磁コイルの長さは12mmである)。欠陥は励磁コイルの長さより長くなると、By信号では、欠陥長さと信号最大振幅値の単調関係は崩れに対し、Bz信号では、欠陥を長くなるにつれ、信号の最大振幅値は大きくなる。したがって、Bz信号はBy信号より欠陥の長さサイジングに適していると考えられる。

したがって、節2.1の分析とおり、欠陥の底面へ回りこ

みによる渦電流信号はよりよく欠陥深さを反映しており、 欠陥長手端部へ回りこむ渦電流が生じる磁束密度信号は より欠陥の長さを反映している。

3. 多次元信号によるき裂サイジング

ー様渦電流プローブによる各磁束密度成分信号は、き 裂の長さ、深さをそれぞれ反映しており、ここでは、そ れぞれの信号の特徴を活かした欠陥サイジング信頼性の 向上策を検討する。

この検討では、モデルフリーの Similarity-based Modeling (SBM) 法を用いて、欠陥の長さ・深さを推定する。SBM アルゴリズムでは、多変量を用い、"類似度"に基づいた 識別手法である [2]。

このアルゴリズムを実施するために、学習用のデータ ベースを用意する必要がある。一様渦電流プローブによ る磁束密度成分信号 Sy 及び Sz を計算し、それらの特徴 量を抽出し、学習用入力信号 X_{tr} を構築する。学習用デ ータの出力信号 Y_{tr} はこれらのき裂の深さ、長さで構築 する。また、長さ・深さが未知のき裂の観測信号から得 られた特徴量によって X_{est} を構築して、求めたいパラメ ータ(これらのき裂の長さ、深さ) Y_{est} は以下の計算で 求められる。

$$\boldsymbol{Y}_{est} = \boldsymbol{Y}_{tr} \cdot \boldsymbol{w}$$

ここで、

$$w = \frac{W}{\sum \hat{W}}$$

$$\widehat{\boldsymbol{W}} = (\boldsymbol{X}_{tr}^{T} \otimes \boldsymbol{X}_{tr})^{-1} \cdot (\boldsymbol{X}_{tr} \otimes \boldsymbol{X}_{est})$$

上の式中の⊗ は非線形類似度計算式である。

図4 欠陥の深さサイジング結果

$$\boldsymbol{U} \otimes \boldsymbol{V} = \frac{1}{\sqrt{2\pi\hbar^2}} e^{-\frac{(\boldsymbol{U}-\boldsymbol{V})^2}{2\hbar^2}}$$

磁束密度信号のY方向成分信号とZ方向成分信号の特 徴量はそれぞれの最大振幅値、最大振幅点の位相及び最 大振幅値になる走査点位置である。

各方向の信号のき裂サイジングへの適用性及び多次元信号の 活用によるサイジングの向上性を評価するために、ここでは、Y 方向成分信号のみ、Z方向成分信号のみ及びY方向とZ方向成 分信号を融合して共使用するといった3条件で欠陥サイジング を行うことを想定した。

図4にこの3条件における欠陥深さサイジング結果を 示す。図中に表記したY'、Z'及びY&ZはそれぞれY 成分信号のみ、Z成分信号のみ及びY、Z成分信号を融合 して使用したことを表す。Y'とZの場合、欠陥深さの推 定値は妥当な深さ範囲外になることがあるに対し、Y& Z'信号を使う場合、欠陥深さの推定値は妥当な範囲に抑 えられた。また、Y'、Z及びY&Zの深さ推定値と実際の 深さの偏差はそれぞれ 1.2mm、2.5mm、0.6mmである。 したがって、YやZ成分信号を単独に用いて、欠陥深さ を評価する場合、欠陥底面に回りこむ電流によるY方向 成分信号を使った場合の深さ推定は欠陥長手方向の回り こむによるZ方向成分信号を用いた場合より有効である ことを確認された。さらに、Y成分とZ成分信号を融合 した多次元信号の活用によって、欠陥サイジングの信頼 性が向上されたことを示した。

4. 結言

本研究では、励磁コイルとき裂の相対関係から、渦電 流探傷信号としての磁束の方向性、振幅変化などを分析 し、磁束密度の各方向成分信号及びそれらの組み合わせ たデータによるサイジング性を評価し、多次元信号の融 合によるき裂サイジングの基礎検討を行った。その結果、 多次元信号の活用によりき裂サイジングの信頼性が向上 する可能性を確認した。今後、多周波数・多センサーデ ータなどを含め、この手法のさらなる高度化を図り、実 測データによるサイジングを行う予定である。

謝辞

本研究の一部は原子力規制委員会・原子力規制庁の委託 事業「平成24年度高経年化技術評価高度化事業・疲労割 れ非破壊評価の高信頼化」の一部として実施された調査 研究の成果物である。

参考文献

- 程衛英、"渦電流の乱れと磁束分布に着目した電磁誘 導試験"、日本非破壊検査協会平成 25 年度春季大会 講演概要集、pp.127-128.
- [2] Stephan WEGERICH, "Condition Based Monitoring using Nonparametric Similarity Based Modeling", 日本 保全学会第3回学術講演会 要旨集、2006、 pp.308 -313.