泊発電所における安全対策強化の取り組みについて −火災防護対策、諸対策-

Advances in Safety Countermearsures at the Tomari NPP of Hokkaido Electric Power on the Basis of Fukushima Daiichi NPP Accident Fire Protection and other advances

	- гпе	Protec	tion and other advances -	
北海道電力株式会社	柴田	拓	Taku SHIBATA	Non member
北海道電力株式会社	太細	克己	Katsumi DASAI	Non member

Fire protections for the nuclear power plants have been based on the fire laws and the conventional guide. After Fukushima Daiichi NPP accident, many safety countemeasuers –also about Fire Protection- have been discussed in the Japanese authorities. This paper shows our present activities in the Tomari NPP about the fire protections from the view points of Fire Prevention, Fire Detection /Suppression Systems and Fire Protection, and other advances.

Keywords: nuclear power plants, fire protection, fire detection, suppression system, fire prevention

1. 緒言

原子力発電所ではこれまで、消防関係法令はもとより、 従来の指針^{*1}「火災発生防止」、「火災の感知及び消火」「火 災の影響軽減」の「3方策を適切に組み合わせた」措置を 講じてきたところである。

平成23年3月11日に発生した福島第一原子力発電所 の事故を踏まえた安全対策の取り組みとして、火災防護 対策についても国大で議論がなされ、上記「3方策をそれ ぞれを考慮した」火災防護対策を講ずることが新基準²²で 示された。

これらを受け、原子力安全の向上を図るため、泊発電所 にて新たに実施する火災防護対策を「火災発生防止」、「火 災の感知及び消火」及び「火災の影響軽減」の3つの観 点から紹介する。

また、泊発電所においてこれまでに実施した又は現在 実施中の安全対策の具体例を紹介する。

2. 泊発電所の火災防護対策

2.1 火災発生防止

泊発電所では従来より、JEAG4607「原子力発電所の火災 防護指針」を参考に、不燃材・難燃材の使用、発火性、引 火性物質の漏えい防止等の対策、電気設備の過電流によ る過熱防止策、雷・地震等の自然現象による火災防止対策 を講じてきた。

水素を内包する構築物および機器を設置しているエリ

連絡先:太細克己 北海道電力株式会社 〒060-8677 札幌市中央区大通東1丁目 E-mail:katsu@epmail.hepco.co.jp アについては、従来より溶接構造による無漏洩対策・換気 により水素の滞留を防止してきたが、新たに水素の漏え いを早期検知するため水素濃度計を新設する。

また、ケーブルについては、従来より耐延焼性(電気学 会報告(Ⅱ部)第139号)を確認した難燃性ケーブルを 使用しているが、今回、垂直燃焼試験を追加実施し、現在 使用している難燃性ケーブルの自己消火性の性能を確認 した。

2.2 火災の感知および消火

2.2.1 火災の感知

消防関連法令に基づき各建屋内に各エリア1種類の感 知器で監視してきた。更なる早期感知および誤感知防止 のため、温度又は煙濃度により監視可能な異なる2種類 の感知器で監視する(図1)。

(a)対策前 (b)対策後 เรา lsi SD S FI S S S ĬH. H. הן החייות S S H S ъĦ S S H o S S dH S HO S S IS H H ß S S B_E S Яш S : 煙感知器 : 熱感知器 **F**:炎感知器 : 光ファイバ式温度センサ 青色シンボル:対策前から設置の火災感知器 赤色シンボル:対策後に追加設置した火災感知器

図1 火災感知器配置図(対策前後)

2.2.2 火災の消火

火災の消火については、従来より消防関係法令に基づき、屋内消火栓・消火器を設置してきた。今回、より迅速 な消火を実現するため、主要建屋の可燃物がある区画に ついては、ハロンガスによる自動消火設備を設置する(図 2)。

図2 消火設備配置図 (対策前後)

2.3 火災の影響軽減

火災の影響軽減については従来の指針に準じて、火災 防護対象機器等の系統を分離してきた。今回、より確実な 系統分離を実現するため、3時間以上の耐火能力を有する 障壁による分離、離隔距離6m以上の確保、または1時 間以上の耐火能力を有する障壁による分離をする。(図3 参照)。消火設備は多重化された異なる原理の感知器によ り検知し自動作動させる

図3 系統分離(ほう酸ポンプ室)(対策前後)

2.4 消防用設備の保全

消防法関係法令に基づき、消防関連設備の点検を実施 している。最新の消防設備では、機能確認の自動化も進ん でいる。

今後は、泊発電所での各火災対策設備の設置環境に応 じて、より効果的な保全を取り進める。

3. 安全対策の具体例

3.1 電源供給

重大事故時の電源供給の信頼性向上を図るため、常設 の非常用発電機を設置、可搬型代替電源車を配備した(図 4、図5)。

図4 常設非常用発電機

図5 可搬型代替電源車

3.2 冷却水供給

重大事故時の冷却水供給の信頼性向上を図るため、可 搬型の送水ポンプ車を配備した(図6)。

図6 可搬型大型送水ポンプ車

3.3 水素爆発防止

重大事故時の原子炉格納容器の水素爆発を防止するた め、原子炉格納容器内に静的水素再結合装置及び電気式 水素燃焼装置を設置した(図7、図8)。

図7 静的触媒式水素再結合装置

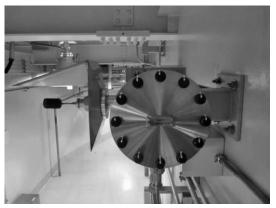


図8 電気式水素燃焼装置

3.4 防潮堤

浸水高さ海抜 15m の津波が襲来した場合でも敷地への 浸水を防止するため、高さ海抜 16.5m、総延長約 1.3kmの 防潮堤を設置中である(図 9、図 1 0)。

(平成24年8月着工、平成26年12月完成予定)

図9 防潮堤(盛土区間)

図10 防潮堤(擁壁区間)

3.5 貯水設備

炉心及び使用済燃料を冷却するための水源の信頼性向 上対策として、約5,000m³の容量を持つピット型の貯水設 備を3基設置中である(図11)。

(平成25年6月着工、平成27年度末完成予定)

図11 貯水設備

3.6 電路

貯水設備など今後設置する設備と既設プラントを結ぶ 配管及びケーブル路を確保するため、トンネル構造等の 電路を設置中である(図12)。

(平成25年6月着工、平成27年度末完成予定)

図12 電路(トンネル構造)

4. 結 言

- 従前から指針及び JEAG4607 に基づく火災防護対策 および保全を実施してきた。
- 福島第一原子力発電所の事故を踏まえた安全対策の 一貫として火災防護対策に係る議論を踏まえて制定 された新基準に基づき更なる火災防護対策を実施す る。
- 泊発電所での各火災対策設備の設置環境に応じて、 より効果的な保全を取り進める。
- 4) 現在実施中の安全対策を着実に進めていく。

参考文献

- 予電用軽水型原子炉施設の火災防護に関する審査指 針」(昭和55年11月6日)(一部改訂平成19年12月 17日)
- 2)「実用発電用原子炉及びその附属施設の火災防護に係 る審査基準」(平成25年6月19日)