重イオン照射した Fe-Cr 合金の磁気ヒステリシス特性の 照射温度及び Cr 濃度依存性

The irradiation temperature and Chromium concentration dependence of the magnetic properties of heavy-ion irradiated Iron-Chromium alloys

岩手大学(院)	兜森	達彦	Tatsuhiko KABUTOMORI	Non Member
岩手大学	鎌田	康寛	Yasuhiro KAMADA	Member
岩手大学	小林	悟	Satoru KOBAYASHI	Non Member
物質·材料研究機構	三谷	誠司	Seiji MITANI	Non Member
九州大学	渡辺	英雄	Hideo WATANABE	Non Member

Abstract

Magnetic properties of heavy-ion irradiated single crystalline Fe-Cr films were investigated. High quality Fe-20%Cr (001) films with a thickness of 30 nm were prepared by electron beam deposition and irradiated by 2.4MeV Cu²⁺ ions at various temperatures and magnetization curves were measured using a VSM. Micro-fabricated films and Fe-Cr film with Cr concentration gradient (0%-13%) were also prepared and magnetic domain structures were observed using a Kerr microscope. The coercivity of Fe-20%Cr increased by irradiation at 475°C, and the critical magnetic field of Fe-Cr films increased above the Cr concentration of 9%. These phenomena reflect the phase separation due to the irradiation. This study demonstrates the feasibility of magnetic techniques to detect the embrittlement of Fe-Cr alloys under the high temperature and irradiation environment.

Keywords: irradiation embrittlement, magnetic properties, iron-chromium alloy

1. 諸言

Fe-Cr 合金は、機械特性・耐熱性・腐食特性に優れてお り、先進原子炉・核融合炉の構造材料として有望とされ ている。しかし、熱と照射環境下において劣化の可能性 がある。熱のみの環境下ではシグマ相形成による脆化や、 二相分離による熱脆化(いわゆる 475℃脆性)などの、劣 化が知られている[1,2]。一方、照射環境下では、カスケ ード損傷により照射脆化が生じる。熱と照射の複合環境 下での劣化機構の解明と非破壊評価の開発が、原子炉や 核融合炉の安全利用のために必要である。

熱脆化の場合、500℃で熱時効した Fe-20%Cr バルク合 金で、硬度と保磁力とが比例関係にあることが報告され ており、非破壊評価法として磁気計測が有力な候補の一 つと考えられる[3, 4]。一方で、熱と照射の複合環境下で の Fe-Cr 合金の脆化と磁気特性に与える中性子照射効果

連絡先: 兜森達彦, 〒020-8551 盛岡市上田 4-3-5 岩手大 学大学院 工学研究科 フロンティア材料機能工学専攻, e-mail:k0209020@gmail/com については、照射用原子炉や照射後試験用ホットラボ施 設を使う大がかりな実験となるため、これまで研究が進 んでいない。

この問題に対して我々は、①重イオン照射(中性子照 射と似たカスケード損傷が生じる一方、試料が放射化し ない[5])、②単結晶薄膜(侵入深さの短いイオン照射でも 試料全体が損傷させることができ、さらに単結晶を用い ることでメカニズムの解釈が容易になる)、③磁気計測 (非破壊評価の可能性がある)、の3つを組み合わせたア プローチで研究を進めている。先行研究としてFe-20%Cr 単結晶薄膜において、二相分離の照射促進現象に伴う磁 気特性の変化が得られており、磁気的非破壊評価の可能 性を報告している[6]。

本研究では、Fe-20%Cr 合金の単結晶薄膜を作製し、温 度を変えて重イオン照射した試料の磁化曲線を測定し、 巨視的な磁気特性に与える照射の影響を調べた。さらに、 重イオン照射した微小磁性体の磁区観察を行い、局所的 な磁気特性評価の妥当性を確認した上で、Cr濃度の勾配 を有する Fe-Cr 合金の磁区観察を実施した。これらの実験 から、Fe-Cr 合金の磁気ヒステリシス特性に与える照射効 果の照射温度および Cr濃度依存性について検討した。

2. 実験方法

2.1 照射温度依存性

照射効果の温度依存性を調べるため、単結晶の Fe-20%Cr合金薄膜を作製した後、照射温度を変えた試料 を用意し、磁化測定を実施した。

薄膜の作製は分子線エピタキシー法(到達真空度: 3×10⁸ Pa)を用いて行った。基板は MgO(001)単結晶(20mm 角)を使用し、厚さ30 nmの Fe-20%Cr 単結晶薄膜を作製 した。また、試料作製時に反射高速電子線回折により、

Fe-Cr(001)[100]// MgO(001)[110]

の方位関係で単結晶が成長したことを確認した。

重イオン照射は九州大学応用力学研究所のタンデム型 加速器を使用した。Cu²⁺イオンを加速電圧 2.4MeV で照 射した。照射温度は、325℃、375℃、425℃、475℃の 4 条件とした。温度安定のための時間も含めて1時間保持 し、保持時間中に15分間照射した。SRIM コードによる 照射損傷計算を行い、今回の照射条件での損傷量は、30nm 深さで0.14dpa と見積もられた。打ち込んだイオンは薄膜 を突き抜け基板に達することが計算からわかっており、 薄膜の磁気特性には影響を及ぼさないと考えた。

照射後に試料振動型磁力計(VSM)を用いて磁化曲線 を測定した。印加磁場は磁化容易方向[100]_{Fe}Cとし、最大 磁場は±2kOeとした。なお、VSM 測定では薄膜試料全体 の磁化を測定しており、巨視的な磁気特性を調べたこと になる。

2.2 Cr 濃度依存性

2.2.1 微小磁性体の磁区観察

磁気特性に与える照射効果を調べる別の手法として、 局所的な磁気特性を反映する磁区観察が考えられる。そ の際、試料を微小な領域に割けることで観察が容易にな る。ここでは、Cr 濃度依存性を調べるための予備実験と して、2.1 の Fe-20%Cr 合金薄膜の一部を使って微小磁性 体を作製し、475℃で重イオン照射し、照射前後で磁区観 察を実施することで、手法の妥当性を確かめた。

微小磁性体の作製には東北大学金研のフォトリソ装置

を用いた。レジストを塗布し、紫外線で露光した後、現 像して 2 次元パターンを残す。さらにイオンビームミリ ングで削り出し、200µm×150µmの微小磁性体を作製した。 重イオン照射は 2.1 と同様の装置を用いて、475℃で照射 した。

磁区観察は磁区観察用顕微鏡(ネオアーク社製ドメイ ンスコープ)で行った。この装置は、強磁性体が可視光 を反射する際に偏光方向が回転する性質(磁気光学カー 効果)を利用して磁化方向にコントラストをつける顕微 鏡である[7]。本実験ではヘルムホルツコイルを用いて、 磁化容易方向の[100]_{FeCr}に磁場を印加した。最初に-100 Oeの磁場で負方向に磁化を飽和させ、バックグラウンド 画像として保存した。その後、+100 Oe まで印加し、さら に-100 Oe に戻した。各磁場での画像からバックグラウン ド画像を差し引き、その磁場での磁区画像として保存し、 磁化過程での磁区構造の変化挙動を調べた。

2.2.2 濃度勾配試料の磁気特性

本研究では、照射効果のCr濃度依存性を効率的に調べるため、濃度勾配を持たせた試料を作製した。その後、 重イオン照射し、磁区観察を実施した。実験方法の詳細 は別論文に掲載した[8]。

薄膜の作製は超高真空中(到達真空度 2×10⁻⁷Pa)におい て、電子ビーム蒸着を用いて行った。MgO(001)上に、直 線駆動シャッターを用いて厚さ0~10nmの楔型のFeとCr の薄膜を交互に3回積層し、全体の膜厚を30nmにした。 蒸着後に600℃で10分間熱処理を行い、相互拡散させて 合金膜を作製した。薄膜作製後に電子線マイクロビーム アナライザ(EPMA)を用いてCr濃度を分析したところ、 0から13%の範囲で濃度勾配を持つ薄膜が作成できたこ とを確認した。

重イオン照射は、2.1 と同様の装置を用いて Cu²⁺ イオ ンを 40 分間、475℃で照射した。今回の照射条件での損 傷量は 0.23dpa と見積もられた。試料上に 400µm 間隔で 直径 150µm の穴があるメタルマスクを固定して照射装置 内に設置した。マスク上から照射することで、薄膜試料 の中に、直径 150µm の円内部の照射領域とそれ以外の未 照射領域を同時に作製した。この手法により、照射・未 照射の領域の磁区観察だけでなく、境界の領域も観察で きるようにした。

磁区観察は2.2.1 と同じ磁区観察顕微鏡を用いて、磁化 容易方向に±100 Oe の範囲で磁場を印加し実施した。

3. 結果および考察

3.1 照射温度依存性

Fig.1 に照射温度の異なる Fe-20%Cr 合金薄膜の磁化曲線を示す。照射温度 325, 375, 425℃では、磁化曲線に顕著 な違いはみられない (Fig.1(a)-(c))。一方、照射温度 475℃ においては磁化曲線の幅が広がっている (Fig.1(d))。これ らの磁化曲線から保磁力を見積もった。

Fig. 2 Irradiation temperature dependence of the coercivity of Fe-20%Cr flm.

Fig.2 に未照射材の保磁力とともに、照射温度に対する 保磁力の変化を整理した。未照射材の保磁力は複数試料 の平均した結果、15±2 Oe であった。それと比較して、325, 375,425℃の照射材の保磁力に大きな違いは見られなか った。熱時効実験で二相分離すると保磁力が増加することが確かめられていることから[3]、325℃から425℃の照射では二相分離は生じていないと推察される。これに対し、475℃照射では保磁力は23 Oe となり顕著に増加した。バルクの熱時効材の研究で、二相分離を起こすには長時間の熱時効が必要とされる[3]。また薄膜の先行研究からも475℃で短時間熱時効しただけでは、保磁力は変化しないことがわかっている[6]。一般に照射環境下では、過剰空孔の形成により非照射環境下に比べて組織変化が促進される。これらを考慮すると、本研究で見られた475℃照射材の保磁力の増加は、照射促進効果による二相分離の組織変化を反映していると考えられる。

3.2 Cr 濃度依存性

3.2.1 微小領域の磁区観察

Fig.3 に未照射の Fe-20%Cr 合金の微小磁性体のカー効 果顕微鏡写真を示す。印加磁場方向の[100]は図の左方向 となっており、各写真の数字は磁場の大きさを表してい る。試料は単結晶のため、磁化容易方向の[100]に等価な、 4 方向の磁区から形成される。そのことを考慮し、主な磁 区の磁化方向を矢印で示した。中間の磁場領域では、磁 化が 4 方向に並び閉じた還流磁区を形成していることが わかる。Fig.4 に 475℃で照射した微小磁性体のカー効果 顕微鏡写真を示す。照射材でも未照射材と同様に還流磁 区の形成を確認した。

ここで、左方向の磁区の面積から右方向の磁区の面積 を差し引き、全体の面積で割ることで、規格化した磁化 を求めることができる。

$$\frac{M}{Ms} = \frac{S_{\rightarrow} - S_{\leftarrow}}{S}$$

規格化した磁化を印加磁場に対して整理したヒステリシス曲線をFig.5 に示す。未照射材に比べて、照射材のヒステリシス曲線の幅が広がっている。保磁力を見積もったところ、未照射材では15.10e、475℃照射材では25.9 Oeとなり、照射により保磁力が増加した。この実験からも二相分離の照射促進現象が確認できた。

照射前後での微小磁性体の保磁力は、3.1 で示した巨視 的な磁気特性計測から求めた薄膜の保磁力と近い値にな っている。局所的な磁気特性を反映する磁区の観察から もヒステリシス特性に与える照射効果を調べることが可 能と考え、この手法を用いて、照射効果のCr濃度依存性 を調べた。

Fig. 3 Magnetic domain structures of micro-fabricated Fe-20%Cr film before irradiation.

Fig. 4 Magnetic domain structures of micro-fabricated Fe-20%Cr film before irradiation.

Fig. 5 Hysteresis curves of the micro-fabricated Fe-20%Cr films obtained from domain observation.

3.2.2 濃度勾配試料の磁気特性

Cr濃度が0から13%の濃度勾配をもつ薄膜についてメ タルマスク上から照射し、磁区観察を実施した。Fig.6は Cr濃度が7%の領域の磁区観察結果を示しており、点線 内部が照射領域で、外部が未照射領域である。磁場を-100 Oe印加した後に、正方向(左方向の[100])に磁場を強め たときの磁区構造の変化を示している。

磁場が8 Oe では磁化方向が左向きの磁区のみ存在する 単磁区であるが (Fig.6(a))、8.5 Oe では方向の異なる新し い磁区が生じて多磁区となる (Fig.6(b))。新しい磁区は照 射領域の外部で生まれていた。ここで、正方向に磁場を 印加した際の単磁区から多磁区になる磁場を臨界磁場 H_{1+} と定義すると、Fe-7%Cr 合金の領域では $H_{1+} = 8.5$ Oe であった。さらに磁場を印加すると、還流磁区が形成し (Fig.6(c),(d))、照射・未照射境界にスパイク状磁区が残 った (Fig.6(e))。その後、スパイク状磁区も消失してすべ て右向きの単磁区となった (Fig.6(e))。この多磁区から単 磁区になる磁場を臨界磁場 H_{2+} と定義すると、 $H_{2+} = 13.5$ Oe となった。

ここで臨界磁場と磁化曲線の関係を Fig.7 にまとめた。 臨界磁場 H_{1+} は、負の磁化飽和状態から磁場を正方向に 強めたときに磁化が増加し始める磁場に、一方、臨界磁 場 H_{2+} は磁化の増加過程から正の飽和状態に転ずる磁場 に対応する。実験では、負方向の磁化過程での臨界磁場 H_{1-} および H_{2-} も測定できる。それら正負の臨界磁場の絶 対値の平均を H_1 、 H_2 とし、Cr 濃度依存性を Fig.8 に整理 した。臨界磁場 H_1 に顕著な濃度依存性は見られなかった。 一方、臨界磁場 H_2 は低濃度で一定の小さな値であるのに 対し、9%以上の高濃度で約2 倍の大きさとなった。

ここで、Cr 濃度による H₁と H₂の挙動の違いのメカニ ズムについて考察する。単磁区から多磁区になる際、新 しい磁区は照射領域の外部で生じており (Fig.6(b))、核生 成は薄膜試料の端面で生じると推測される。核生成のし やすさは、形状磁気異方性による薄膜端面での磁極の表 れ方に関係するため、Cr 濃度でなく薄膜の形状・厚さに 敏感と考えられる。このことが、H₁が Cr 濃度に依存しな い原因と考えられる。一方、多磁区から単磁区になる際 のスパイク状磁区の消滅は、照射・未照射境界で生じて いた (Fig.6(e))。このことは、H₂が照射・未照射境界で のスパイク状磁区の安定性に関係することを示唆し、照 射領域で内部組織変化が生じ磁気特性が変化した可能性 が考えらえる。従って、照射後の内部組織が Cr 濃度によ り異なると考えると、H₂ の Cr 濃度依存性を説明できる。 Fe-Cr 2 元合金の低温側の状態図の詳細は現在も論争が続いているが、最近の報告では 9%Cr 付近より高濃度側で二相分離が生ずる可能性が指摘されている[9]。今回確認された 9%Cr より高濃度側で臨界磁場 H_2 が大きい現象は、照射領域での二相分離に伴うヒステリシス特性変化の可能性を示唆しており、それを磁気的に捉えられることを示している。

Fig. 8 Cr concentration dependence of the critical magnetic fields estimated from domain observation.

4. 結言

Fe-Cr 合金の脆化の非破壊評価を念頭におき、その磁気 特性に与える照射効果を調べるため、単結晶薄膜を重イ オン照射し、磁化測定・磁区観察を実施した。

Fe-20%Cr 合金では、325, 375, 425℃照射では保磁力に 顕著な違いはみられなかったが 475℃照射では保磁力が 増加した。これは照射が 2 相分離を促進し(照射促進現 象)、その組織変化を保磁力が捉えた結果と考えられる。

微細加工を施した Fe-20%Cr 合金微小磁性体の磁区観 察に成功した。磁化方向ごとの磁区の面積率からヒステ リシス曲線を求めて保磁力を算出したところ、475℃照射 材で保磁力の増加を確認した。このことから、局所的な 磁気特性を評価する磁区観察からも二相分離の照射促進 現象が確認できた。

同一試料内に 0%から 13%の範囲で Cr 濃度を変えた Fe-Cr 合金薄膜について重イオン照射して磁区観察を行 い、磁区構造が変化する臨界磁場を調べた。単磁区化の 過程で、照射・未照射境界にスパイク状磁区が生じ、単 磁区化の臨界磁場は高Cr濃度側で大きいことがわかった。 その Cr 濃度の範囲は Fe-Cr 状態図より二相分離が生じる とされる濃度範囲とおよそ一致した。

以上の結果は、磁気計測に基づく Fe-Cr 合金の熱・照射 環境下での脆化の非破壊評価の可能性を示している。実 際の Fe-Cr 鋼に適用するためには、多結晶粒界、析出物や 転位などの複雑な内部組織の影響も考慮する必要があり、 それらを対象とした研究の展開が必要である。

謝辞

本研究の一部は、科学研究費基盤研究 B [23360418, 26289361]のもとに行われており、また九州大学応用力学 研究所及び、東北大学金属材料研究所の共同利用研究と して実施しました。微細加工では、東北大学の高梨弘毅 先生、水口将輝先生にお世話になりました。

参考文献

- Y. Ustinovshikov, M. Shirobokova, B. Pushkarev, Acta Materialia, 44, pp.5021-5032, 1996.
- [2] S. Novy, P. Pareige, C. Pareige, *Journal of Nuclear Materials*, 384, pp.96-102, 2009.
- [3] J. N. Mohapatra, Y. Kamada, H. Kikuchi, S. Kobayashi, J. Echigoya, D.G. Park and Y. M. Cheong, *IEEE Transactions*

on Magnetics, Vol. 47, No. 10, pp. 4356-4359, 2011.

- [4] 鎌田, J. N. Mohapatra, 菊池, 小林, 越後谷, 大谷, D. G. Park, H. K. Jung, Y. M. Cheong, 日本 AEM 学会誌, Vol. 19, No. 2, pp. 278-283, 2011.
- [5] C. Abromeit, Jounral of Nuclear Materials, 216, pp.78-96, 1994.
- [6] Y. Kamada, H. Watanabe, S. Mitani, J. N. Mohapatra, H. Kikuchi, S. Kobayashi, M. Mizuguchi, K. Takanashi, *Journal of Nuclear Materials*, 442, pp.S861-S864, 2013.
- [7] 赤羽,柳沢,目黒,斎藤,高橋,日本応用磁気学会誌, Vol. 29, No. 8, pp. 779-784, 2005.
- [8] 鎌田, 兜森, 小林, 菊池, 渡辺, 日本 AEM 学会誌, 2014 印刷中.
- [9] G Bonny, D. Terentyev, L. Malerba, *Scripta Materialia*, 59, pp.1193-1196, 2008