AE センサを用いた鋼棒、鋼管の健全性評価技術の開発 (1)実験的検討

Development of a new inspection system for steel rod and pipe using AE sensor (1) Experimental approach

原子燃料工業株式会社	松永	嵩	Takashi MATSUNAGA	Member
原子燃料工業株式会社	小川	良太	Ryota Ogawa	Member
原子燃料工業株式会社	匂坂	充行	Mitsuyuki SAGISAKA	Member
株式会社アトリー	鵜飼	康史	Yasufumi UKAI	
原子燃料工業株式会社	礒部	仁博	Yoshihiro ISOBE	Member

Abstract

For evaluating the soundness of steel rods and pipes, which are installed in nuclear power plants, we have developed a new inspection system using an AE (acoustic emission) sensor. This report described the results of studies for the detection of defects in the steel pipe and steel rod using a new inspection system.

Keywords: non-destructive inspection, AE sensor, steel rod, steel pipe

1.緒言

原子力発電所では、多数の基礎ボルトや配管が用い られている。これらの基礎ボルトや配管などの鋼棒、 鋼管は、周辺環境(設置場所や内部流体、機械振動な ど)により経年劣化(腐食、摩耗、き裂など)が発生 する可能性が潜在している¹⁻²。従って、機器・構造物 の安全性・信頼性を確保する観点より、鋼棒、鋼管の 経年劣化を検出する非破壊検査技術が望まれている。

このような鋼棒、鋼管の健全性を検査する手法とし て、一般的には、目視検査や打音検査、超音波検査が 採用されている³⁷。しかしながら、目視検査では、た とえば基礎ボルトではナットより下部について、配管 では保温材等がまかれている部分について、容易に確 認できない。また、打音検査は、ハンマーで打撃し、 その時の打撃音とハンマーを通した打感との二つから、 検査員が異常の有無を判定する手法であるが、検査精 度は検査員の熟練度に依存しており、また、周囲の環 境よる影響を受けるため、客観的な基準を設けること が困難である。超音波検査は露出部に超音波センサを 設置し、反射信号に基づいて、腐食や傷などの欠陥の 位置や大きさを検出する手法であり、詳細検査として 一般的に広く使用されているが、超音波センサを接触 する面の平滑度を考慮する必要があり、形状が複雑な ものには適用できないなど事情があり、検査出来る範 囲は限定的である。

本研究では、超音波検査のような詳細検査に比べて、 より効率的で簡便かつ短時間で実施でき、従来の打音 検査での課題点である検査員の熟練度、客観的な基準 について、客観性、記録性のある検査手法として AE(acoustic emission)センサを用いた鋼棒、鋼管健全性 評価技術を開発している⁸。

本報では、鋼棒、鋼管を機械加工により減肉、き裂 を付与し、腐食・き裂などの欠陥を模擬した試験体を 複数作製し、本検査システムを用いた試験を実施する ことで、鋼棒・鋼管の欠陥の検出性について検討した 結果を述べる。また、欠陥の形状によっては健全性に 与える影響が異なると考えられるため、周方向に均一 な欠陥と、周方向で異方性のある欠陥についての検出 性についても検討する。

連絡先:松永嵩、〒590-0451 大阪府泉南郡熊取町 朝代西1-950、原子燃料工業株式会社 E-mail: tk-matsunaga@nfi.co.jp

2. 試験

2.1 試験概要

鋼棒、鋼管の非破壊検査の一例として、鋼棒について は燃料取替用水タンクの基礎ボルトを対象として、φ60 mmの鋼棒を用い、鋼管については、一般的に使用され ている φ42.7mmの炭素鋼配管を用いた。これらの部材に 対し、機械加工により減肉、き裂などを付与することに より、模擬劣化試験体を作製し、本検査システムを用い た試験を実施した。

本検査システムは、AE センサ、プリアンプ、デジタル オシロスコープなどより構成されている(Fig 1)。

2.2 試験体の作製

鋼棒については、主に腐食の検出を目的とした試験体 (健全なものも含めて、3種類の試験体)を作製した。 試験体の形状をFig2に示す。

鋼管については、き裂、腐食、貫通孔の検出を目的と した試験体(健全なものも含めて、4種類の試験体)を 作製した。試験体の形状をFig3に示す。

Fig 2 Dimension of the specimen for steel rod

Fig 3 Dimension of the specimen for steel pipe

2.3 試験方法

今回作製した試験体は、周方向で非対称な試験体(鋼棒 No 2、鋼管 No 2、鋼管 No 4)があるため、打撃する 点によって励起される振動モードに差が生じる可能性が ある。そのため、打撃する位置(加振点)については、 減肉、き裂または貫通孔を付与した面を0°として、周方 向90°間隔で3点実施した。AE センサの設置する位置 は鋼棒、鋼管ともに端面の位置に配置した。センサ設置 位置及び打撃位置の例(鋼棒)をFig4に示す。

Fig 4 Example of hammering position and AE sensor location

2.4 信号解析方法

ハンマー打撃により信号が発生し、時間の経過ととも に減衰する信号波形が得られる。次に、この得られた信 号波形に FFT (高速フーリエ変換)を実施し、信号波形 の周波数情報を得る。鋼棒及び鋼管の信号例を Fig 5、Fig 6 に示す。この周波数情報のうち、最も低い周波数に着目 し、試験体の形状との対応について検討した。

Fig 5 Example of an AE signal and frequency distribution for steel rod

Fig 6 Example of an AE signal and frequency distribution for steel pipe

3. 結果と考察

鋼棒において、0°及び 180°方向から打撃した試験結果 をFig7に示す。健全な鋼棒(No1)に比べて、片側腐食 模擬試験体(No2)、周方向腐食模擬試験体(No3)の周 波数ピークはいずれも低周波側にシフトする結果が得ら れた。これは鋼棒に減肉を付与したことにより、鋼棒の 剛性が低下し、固有振動数が変化したためと考えられる。 また、0°方向と 180°方向の打撃方向による差は確認され なかった。

次に、90°方向から打撃した結果を Fig 8 に示す。健全 な鋼棒 (No1)、周方向腐食模擬試験体 (No3)の周波数 分布については、0°及び 180°方向から打撃した結果と周 波数ピークの位置関係は一致するが、片側腐食模擬試験 体 (No2) については、健全な鋼棒で見られる 2800Hz 付 近の周波数ピークが確認された。これは、片側腐食模擬 試験体 (No2) が方向によって鋼棒の剛性が異なるため、 固有振動数が変化したと推測される。したがって、打撃 方向を変化させることにより、劣化形状を推測できる可 能性が見出された。

Fig 7 Frequency distribution for steel rod (Hammering position: 0 deg, 180 deg)

Fig 8 Frequency distribution for steel rod (Hammering position: 90 deg)

鋼管においても同様に、0°及び 180°方向から打撃した 試験結果を Fig 9 に示す。健全な鋼管(Nol)に比べて、 き裂模擬試験体(No2)、周方向腐食模擬試験体(No3) 貫通孔模擬試験体(No4)の周波数ピークはいずれも低周 波側にシフトする結果が得られた。これは鋼管にき裂、 減肉、貫通孔を付与したことにより、鋼管の剛性が低下 し、固有振動数が変化したためと考えられる。また、0° 方向と 180°方向の打撃方向による差は確認されなかった。

次に、90°方向から打撃した結果を Fig 10 に示す。健全 な鋼管(Nol)と、周方向腐食模擬試験体(No3)の周波 数分布については、0°及び 180°方向から打撃した結果と 周波数ピークの位置関係は一致するが、き裂模擬試験体

(No2)、貫通孔模擬試験体(No4)については、0°及び 180°方向の周波数ピークより高周波側にシフトする結果 が得られた。これは、片側腐食模擬試験体(No2)が方向 によって鋼管の剛性が異なるため、固有振動数が変化し たと推測される。したがって、鋼棒の結果と同様に打撃 方向を変化させることにより、劣化形状を推測できる可 能性が見出された。

4. 結言

鋼棒、鋼管を用いた模擬試験体を複数作製し、本検査 システムを用いた試験を実施し、欠陥の検出性について 検討した。また、欠陥の形状によっては健全性に与える 影響が異なると考えられるため、周方向に均一な欠陥と、 周方向で異方性のある欠陥についての検出性についても 検討した。その結果を以下にまとめる。

- 鋼棒、鋼管いずれの試験体においても、機械加工によって減肉等を模擬した試験体は、健全な試験体と比べて、着目するピーク周波数が低周波側にシフトする結果が得られるため、ピーク周波数を指標とすることで、 鋼棒・鋼管の健全度を評価しうる可能性を見出した。
- 周方向で非対称な試験体については、周方向での打撃 結果に差異が見られたため、周方向で異方性のある欠 陥が想定される場合においては、周方向の異なる点で 加振させた結果を用いることにより、劣化形状を推測 できる可能性を見出した。

参考文献

[1] "高浜発電所 3 号炉 高経年化技術評価書", 関西電力株式会社(2014).

[2] "女川原子力発電所1号炉 高経年化技術評価書", 東北電力株式会社(2013).

[3] 林山,福富広幸,熊野秀樹,伊藤圭介,"埋め込み基礎 ボルトにおける減肉欠陥の検出及びその深さの推定",日 本機械学会論文集(A編),77巻783号,pp.1851-1858,2011.
[4] 小平小次郎,米谷豊,河野尚幸,馬場淳史,黒崎裕一, "基礎ボルトの超音波探傷技術の適用と開発",非破壊検

查第59卷6号, pp.254-258, 2010.

[5] 秋山哲治, 清宮理, 北澤壮介, 内藤英晴, "合成部材で のコンクリート充填性検査としての打音法の適用性", コ ンクリート工学年次論文集, Vol.25, No.1, 2003

[6] 熊野秀樹, 伊藤圭介, 山本千秋, 加古晃弘, 藤尾武成, 城下悟, 林山, 福富広幸, "基礎ボルトの減肉検査技術開 発", 日本保全学会第 7 回学術講演会要旨集, (2010), pp.58-60

 [7] 竹之内博行, 榎園正義, 谷倉泉, 半澤貢, "ボルトの疲労き裂検出に対する超音波探傷法の適用性", 土木学会論 文集, No.404(1989), pp443-449

[8] 原子燃料工業株式会社, "部材の状態評価方法", 特願 2014-2501