

1. 緒言

高温ガス炉は950℃の高温の熱を供給可能な原子炉で あり、高効率発電に加え、水素製造、化学・石油プラン トでの熱利用、低温排熱を利用した海水淡水化、地域暖 房等、多様かつ高効率の熱利用が期待されている。また、 耐熱性に優れたセラミックス被覆燃料等により、電源や 冷却材が喪失するような過酷な状況においても、機器、 設備の動作や運転員の操作に頼ることなく、原子炉が安 全に静定し、環境への放射性物質の大量放出がないとさ れる等、優れた安全性を備えている。

本稿では、高温ガス炉の概要と特長を述べる。

2. 軽水炉との違い

運転中の原子炉では、核分裂反応が連続的に起こる臨 界が維持されている。核燃料であるウラン235等の核分 裂性核種と中性子により核分裂反応が起きると、熱エネ ルギーが発生すると同時に中性子が発生し、それらは臨 界維持に用いられる。核分裂反応で発生する中性子は高 速(光速の数%程度)であるが、ウラン235等の核分裂性 核種は、低速の中性子(熱中性子)との方が核分裂反応を 起こしやすく、比較的に容易に臨界を維持することがで きる。このように、熱中性子を用いて臨界を維持する原 子炉は熱中性子炉と呼ばれる。高温ガス炉及び広く発電 用原子炉として用いられている軽水炉は共に熱中性子炉 であるが、中性子の減速に用いる減速材が異なる。表1 に示すように、高温ガス炉では減速材として黒鉛が用い られるのに対し、軽水炉では軽水が用いられる。冷却材 については、高温ガス炉ではヘリウムガスが用いられる のに対し、軽水炉では軽水が減速材と兼ねて用いられる。 ヘリウムガスは化学的に不活性であり、高温でも原子炉 構造物と化学反応を起こすことはなく、高温の熱の生産 を可能にしている。さらに、ヘリウムガスは核的にも不 活性であり、原子炉の核特性にほとんど影響を及ぼさな

い利点も有する。燃料については、高温ガス炉では二酸 化ウラン燃料核をセラミックスで被覆した直径約1 mm の粒子状燃料(被覆燃料粒子)が用いられるのに対し、軽 水炉では二酸化ウランを焼き固めた円柱状のペレットが 用いられる。軽水炉では、燃料ペレットを収納している 被覆管により核分裂生成物を閉じ込めているが、高温ガ ス炉では、被覆燃料粒子1粒1粒の被覆層が、その役目 を担っている。原子炉出口冷却材温度、即ち原子炉から 取り出して利用できる熱の温度は、高温ガス炉は950℃ に達し、軽水炉に比べて600℃以上高い。この高温の熱 を利用したガスタービン発電により高温ガス炉は50% の発電効率が可能であり、軽水炉の蒸気タービン発電に 比べて1.4 倍程度高い。

表1 高温ガス炉と軽水炉の比較

項目	高温ガス炉	軽水炉
減速材	黒鉛	軽水
冷却材	ヘリウムガス	軽水
燃料	低濃縮ウラン 被覆燃料粒子	低濃縮ウラン ペレット
原子炉出口 冷却材温度	700~950°C	290~340°C
発電効率	50% [1]	35% [2]

3. 高温ガス炉の構造

高温ガス炉の炉型は、炉心に装荷する燃料体の形状の 違いによりブロック型(プリズマティック型)とペブル ベッド型の2つに大別できる。ブロック型高温ガス炉 では、被覆燃料粒子を黒鉛粉末と混合して円筒状または 円柱状に焼結した燃料コンパクトを、六角柱状の黒鉛ブ ロックに装荷して燃料体が構成される。一方、ペブルベッ ド型高温ガス炉では、被覆燃料粒子を黒鉛粉末と混合し て球形に焼結し、その表面を黒鉛層で包んで球形の燃料 体が構成される。我が国で研究開発が進められている高 温ガス炉はブロック型高温ガス炉であり、HTTR[3]もブ ロック型高温ガス炉である。以下ではHTTRを例に用 いてブロック高温ガス炉の構造を説明する。

3.1 HTTR の概要

HTTR の主要諸元を表2に示す。原子炉の熱出力は 30 MW であり、原子炉から取り出して利用できるヘリ ウムガス温度、即ち原子炉出口冷却材温度は、定格運転 時は850℃、高温試験運転時は950℃である。

項目	値
原子炉出力	30 MW
原子炉入口冷却材温度	395°C
原子炉出口冷却材温度	850, 950°C
1次冷却材圧力	4 MPa
炉心有効高さ	2.9 m
炉心等価直径	2.3 m
出力密度	2.5 MW/m^3

表 2 HTTR の主要諸元

3.2 炉心

HTTR の原子炉圧力容器縦断面図を図1に示す。炉心 は、鋼製の圧力容器の中に収められている。冷却材は、 炉心下部に設けられている二重管の環状の外側流路から 圧力容器内に入り、まず炉心下部の鋼製の構造物を冷却 する。その後、炉心側部を流れ、さらに固定反射体と圧 力容器の間の流路を上方へ流れて上部プレナムに至り、 そこで反転して炉心に流入する。炉心で加熱された冷却 材は、高温プレナムで一つにまとめられ、二重管の内管 を通って圧力容器外部へ流れる。

HTTR の炉心の水平断面図及び炉心ブロック積層構造 図を図2に示す。炉心は、4種類の黒鉛製ブロック(燃 料ブロック(燃料体)、制御棒案内ブロック、照射ブロッ ク及び反射体ブロック)を円柱状に積み上げたものであ る。黒鉛製ブロックを積み上げた1列をカラムと称し、 炉心は合計61カラムで構成され、その周囲は黒鉛製の 固定反射体で囲まれている。制御棒案内ブロックには、 軸方向に3つの孔が施されており、2つが制御棒挿入孔、 1つが後備停止系の炭化ホウ素ペレット挿入孔である。 各ブロックの外寸法は同じで、面間距離360 mm、高さ 580 mmの六角柱状の形状である。

3.3 燃料

HTTRの燃料ブロックの構造を図3に示す。燃料ブロッ クは、黒鉛ブロックの31または33箇所に施された冷却 材流路孔に燃料棒を挿入した構造である。冷却材である ヘリウムガスは、燃料棒と黒鉛ブロックの間のギャップ を下向きに流れて燃料を冷却する。燃料棒は黒鉛製ス リーブに円筒状の燃料コンパクトを14個格納した構造 である。燃料コンパクトは被覆燃料粒子と黒鉛粉末を混 ぜて圧縮焼結したもので、1個の燃料コンパクトには約 13,000個の被覆燃料粒子が充填されている。被覆燃料粒 子は、直径約0.6 mmの二酸化ウランの燃料核を、低密 度熱分解炭素、高密度熱分解炭素及び炭化ケイ素の薄い 層で4層に被覆した構造である。各被覆層の主な機能は 以下の通りである[4]。

第1層:低密度熱分解炭素層

- 核分裂片損傷による被覆層破損の防止
- 気体状核分裂生成物及び燃焼に伴い発生する一酸
 化炭素のガス溜
- ・ 燃料核のスウェリングの吸収

第2層:高密度熱分解炭素層

- 製造過程における第3層蒸着中の燃料核保護
- 気体状核分裂生成物の閉じ込め
- 核分裂生成物と第3層との反応の抑制

保全学 Vol.18-1 (2019)

第3層:炭化ケイ素層

- 被覆燃料粒子の寸法安定性保持及び構造的強度保持
- ・ 気体状及び金属核分裂生成物の閉じ込め
- 第4層:高密度熱分解炭素層
 - 第3層の機械的保護
 - 第3層が破損した場合の気体状核分裂生成物の閉じ込め

各燃料ブロックには、原子炉運転中の制御棒の負荷を低 減するために、反応度調整材がダウエルピンの下に棒状 に装荷されている。

3.4 反応度制御設備

反応度制御設備は、制御棒系と後備停止系の動作原理 の異なる2つの独立した系統から構成される。制御棒系 は、原子炉の反応度を制御するとともに、通常運転時、 運転時の異常な過渡変化時及び事故時に安全、かつ、確 実に原子炉を停止させる機能を有する。制御棒(図4)は、 2本を1対として16対が炉心に配置されており、中性 子吸収材には炭化ホウ素が用いられている。通常運転時 は、スタンドパイプ内の制御棒駆動装置によるワイヤ ロープの巻上げ巻下げにより、制御棒は炉心内を上下に 移動する。原子炉スクラム時は、電磁クラッチの切り離 しにより、制御棒は炉心内に重力により落下挿入される。

後備停止系は、制御棒が何らかの原因で炉心に挿入で きないような事態が生じた場合、炭化ホウ素ペレットを 重力で炉心に落下させ、全ての運転状態から原子炉を停 止させる機能を有する。

4. 特長

4.1 優れた安全性

炉心を構成する被覆燃料粒子及び黒鉛構造物は非常に 耐熱性が高く、冷却材喪失時においても健全性を維持し、 炉心の黒鉛が崩壊熱を吸収して原子炉圧力容器外表面か ら熱を放出することにより、炉心溶融を起こさない設計 が可能である [5]。さらに、冷却材のヘリウムガスは高 温でも化学的に安定な不活性ガスであり、燃料や黒鉛構 造物と反応せず、水素爆発等が発生する恐れがない。

原子力機構では、HTTR を用いて、高温ガス炉の安全 性を実証する試験を2002年から実施している。2010年 には、出力30%の状態からヘリウムガス冷却材の循環 機を強制的に停止するとともに、制御棒の挿入による原 子炉停止操作も行わない炉心の強制冷却喪失試験を実施 し、ドップラー効果により原子炉は自然に停止し、その 後、安定な状態が維持されることを実証した。なお、現 在(2019年2月)、HTTR は新規制基準対応のため停止 中であるが、運転再開後には出力100%の状態から炉心 の強制冷却喪失試験を実施する予定である。

4.2 多様な熱利用

耐熱性の高い炉心と化学的に安定な冷却材により、高 温ガス炉では最高950℃の高温の熱を原子炉から取り出 して利用することができる。HTTRでは、2010年に原 子炉出口冷却材温度950℃の50日間の連続運転に成功 し、将来の高温の熱利用の実現可能性を示した[6]。こ の高温の熱を高温から低温までカスケードに利用するこ とで、極めて高い熱利用率を達成することができる。例 えば、850℃以上の熱を水素製造や化学プロセス等の熱 源として利用し、850℃以下の熱でヘリウムガスタービ ンによる発電を行う熱電併給システムでは、約200℃の 発電システムの廃熱も海水淡水化等の熱源として利用す ることにより、システム全体の熱利用率は約80%に達 する[7]。また、熱や水素を発電分野以外で利用拡大す ることにより、国内の二酸化炭素排出量12.1億トン(2013 年度)を最大で15%削減できる[8]。高温ガス炉の熱利 用技術の詳細は、本特集の解説記事 p.11の「高温ガス炉 の熱利用技術」を参照されたい。

4.3 優れた経済性

高温ガス炉は軽水炉に比べて出力密度が低いため、原 子炉設備の物量増大等による発電単価の増加要因があ る。一方で、水・蒸気系設備がほとんどなくプラント全 体の設備数が少ないこと、高温の熱利用により発電効率 が高いこと、優れた安全性により追加的安全対策が不要 なこと等による発電単価の抑制要因がある。全体として は、軽水炉プラントの発電単価 8.9 円 /kWh[9] に対して 高温ガス炉プラントの発電単価は 6.4 円 /kWh[10] であ り、高温ガス炉は優れた経済性を有している。

4.4 バックエンドオプションの柔軟性

使用済燃料を再処理する場合、燃料コンパクトから燃 料核を取り出すための前処理工程が必要となる。前処理 工程以降には、軽水炉の使用済燃料に用いられている PUREX 法が適用できる [11]。前処理工程は、①燃料コ ンパクトから被覆燃料粒子を取り出す工程、②被覆燃料 粒子から被覆層を取り除く工程で構成される。①につい ては、触媒を用いて燃料コンパクトを燃焼させる方法に より被覆燃料粒子を取り出せることが試験で確認されて いる [12]。②については、回転式グラインダを用いる方 法及びジェットガスを用いる方法により被覆層を取り除 けることが試験で確認されている [11, 12]。このように、 前処理工程の基礎技術は確立されており、高温ガス炉の 使用済燃料の再処理は十分可能である。

使用済燃料を直接処分する場合、使用済燃料に含まれ る放射性物質が地下水に溶解する等して人間の生活圏 に影響を及ぼさないようにするこが重要となる。被覆 燃料粒子のセラミック被覆層の強度は、湿潤環境下で 100 万年程度維持されることが期待できる [13]。これに より、放射性物質を人間の生活圏から長期にわたり隔離 することができ、高温ガス炉の使用済燃料は、直接処分 に適している。

再処理で発生する高レベル放射性廃棄物を封入する キャニスタの数及び処分場面積は、高効率発電により、 軽水炉に比べて発電量あたり30%削減できる[14]。ま た、使用済燃料を封入するキャニスタの数及び処分場面 積は、高効率発電や高燃焼度等により、軽水炉に比べて 発電量あたり60%削減できる[14]。このように、高温 ガス炉は発電量あたりの高レベル廃棄物の発生量が軽水 炉に比べて少なく、処分場面積も小さくできる。

5. 結言

高温ガス炉は、冷却材喪失事故時においても、炉心溶 融や大量の放射能放出事故が起きる恐れのない、極めて 高い安全性を有する原子炉である。

高温ガス炉は、950℃程度の高温の熱を取り出すこと が可能であり、ガスタービン発電による高効率発電、水 素製造の熱源等、さまざまな分野での熱利用及びそれに よる二酸化炭素排出量の削減が期待できる。また、優れ た安全性等の特長により、高温ガス炉の発電単価は軽水 炉に比べて安く、優れた経済性を有する。さらに、使用 済燃料の再処理は既存技術で十分可能であること、また、 被覆燃料粒子は直接処分に適していることから、バック エンドオプションに柔軟に対応できる。

参考文献

- H. Sato, et al., GTHTR300 A nuclear power plant design with 50% generating efficiency, Nucl. Eng. Des., 275, 190-196 (2014).
- [2] 原子力安全研究協会編,軽水炉燃料のふるまい,実務テキストシリーズ No.3 (1998).
- [3] S. Saito, et al., Design of High Temperature Engineering Test Reactor, JAERI 1332 (1994).
- [4] 沢和弘 他,高燃焼度高温ガス炉用被覆燃料粒子の 設計,JAERI-Tech 98-025 (1998).

- [5] 國富一彦 他,高温ガス炉ガスタービン発電システム(GTHTR300)の設計研究,日本原子力学会和文論 文誌,1(4),352-360 (2002).
- [6] 栃尾大輔 他, HTTR 長期連続運転の結果の概要

 -高温・並列 50 日運転-, JAEA-Technology 2010-038 (2010).
- [7] X. Yan, et al., A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East, Nucl. Eng. Des., 271, 20-29 (2014).
- [8] Y. Kamiji, et al., Study of HTGR Contribution to Japan's CO₂ Emission Reduction Goal in 2050, JAEA-Technology 2016-010.
- [9] エネルギー・環境会議コスト等検証委員会編,コスト等検証委員会編4,コスト等検証委員会報告書(平成 23 年 12 月 19 日).
- [10]原子力機構推計, https://httr.jaea.go.jp/images/index/ panf_2015.pdf.
- [11] 沢和弘 他,高温工学試験研究炉燃料の貯蔵及び再 処理技術の検討,JAERI-Research 2001-034 (2001).
- [12]角田淳弥 他,高温ガス炉燃料の再処理技術,日本 原子力学和文論文誌,2(4),546-554 (2003).
- [13]C. Rodriguez, et al., Deep-Burn: making nuclear waste transmutation practical, Nucl. Eng. Des., 222, 299-317 (2003).
- [14]Y. Fukaya, et al, Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR, Nucl. Eng. Des., 307, 188-196 (2016).

(平成 31 年 2 月 25 日)

著者紹介

著者:後藤 実
所属:日本原子力研究開発機構
高速炉・新型炉研究開発部門
専門分野:高温ガス炉核設計