特集	^{特集記事「高度評価・分析技術」(3)} 超小型試験片による 原子炉圧力容器鋼の強度評価技術
記事	 一般財団法人 電力中央研究所 材料科学研究所 構造材料領域 山本 真人 Masato YAMAMOTO 小林 知裕 Tomohiro KOBAYASHI 信耕 友樹 Tomoki SHINKO

1. はじめに

原子炉圧力容器(RPV)の中で中性子照射を受けた RPVと同種鋼材で作られた監視試験片を適時に取り出 して強度を測る監視試験は、全運転期間に亘って RPV が健全であることを確認するための重要な実験手段であ り、日本電気協会の技術規程 JEAC4201[1]として評価 手法が定められている。RPV 内の限られた空間に複数 回の監視試験をカバーする物量の試験片を納める必要か ら小型試験片による評価技術が求められてきた。近年で は、運転開始から40年を越えてさらに20年間の運転期 間延長に追加で必要となる監視試験に対応するため、よ り小さな試験片でより精度良く評価を行える新しい技術 へのニーズが高い。

本稿では、電力中央研究所(電中研)で取り組んできた 超小型試験片による材料強度評価技術として、従来の 監視試験片の1/8以下の体積の試験片による破壊靭性^{注1)} の評価技術と、直径8mm、厚さ0.5mmという小型円板 試験片による降伏応力の評価技術について述べる。

2. 超小型試験片による破壊靭性評価

2.1 超小型の破壊靭性試験片

電中研は、親指の爪ほどの超小型の破壊靭性試験片 (4×10×9.6mm、図1)を開発[2]した。この試験片は、 監視試験片として全ての RPV に納められているシャル ピー試験片より小さいため、監視試験済みの残材から加 工して新たな試験片とし、追加のデータを得られる。シャ ルピー試験片と比べ、(1)破壊靭性を直接評価できるの で、シャルピー試験結果から間接的に破壊靭性を評価す る場合より評価精度が向上できる、(2)一つのシャルピー 試験片から最大8個を加工可能なのでデータ点数を増大 させることができる、という特長を持つ。監視試験では、 温度とともに破壊靭性が変化する延性脆性遷移温度域の 破壊靭性と、その高温側で破壊靭性がほぼ一定となる上 部棚の破壊靭性の二種類が評価の対象である。2.2 およ び2.3 節ではそれぞれの技術について述べる。

後方:シャルピー試験片(10 × 10 × 55mm) 手前:超小型の破壊靭性試験片(4 × 10 × 9.6mm) 図1 超小型破壊靭性試験片とシャルピー試験片

2.2 延性脆性遷移温度域の破壊靭性評価

現在の監視試験手法が確立し原子炉の商用運転が始 まった後に、マスターカーブ法[3](以下 MC 法)という 延性脆性遷移温度域を対象とする破壊靭性評価法が開発 された。MC 法は破壊靭性の分布に関する理論と実験事 実に基づく経験則に従って構築され、それまでより少な い試験片(超小型試験片の場合、最低 8 個)で精度の良 い破壊靭性の評価が可能となった。また、それまで破壊 靭性の評価には大きな寸法の試験片が必要とされてきた が、MC 法では寸法依存性を補正することが可能となっ た。図1の超小型破壊靭性試験片を使い MC 法で評価 することで、監視試験として原子炉内で照射された材料 の破壊靭性を直接評価できるようになった。同手法は国 際ラウンドロビン試験[4]などを経て産業界のコンセン サスを得て、評価手法として規格化[5,6]されるに至っ ている。現在、JEAC4201の改定が日本電気協会で進め

注1) 破壊靭性とは、亀裂が入って弱くなった材料が壊れる時の 強度であり、起動停止や地震による荷重を上回っていれば RPV などの構造物が健全だと評価される。

られている。ここではシャルピー試験片の代替として超 小型の破壊靭性試験片の使用を前提とした MC 法によ る監視試験法の採用が検討されている。

2.3 上部棚温度域の破壊靭性評価

延性脆性遷移温度域と上部棚温度域では材料の壊れ方 が異なり、破壊靭性の意味合いも評価法も異なる。上部 棚の破壊靭性は中性子照射によって低下するが、多くの 場合は低下後も RPV の材料強度には十分な余裕がある。 従って健全性評価規格 [7] では簡単かつ保守的な基準と してシャルピー試験で測定される吸収エネルギー Cv が 68J^{注2)}を上回ること、とするスクリーニング基準が設け られており、この基準を下回る場合にのみ破壊靭性を評 価する必要が生ずる。スクリーニング基準に基づく評価 は簡単であるが、試験毎に最低3個のシャルピー試験片 について試験が実施され、また得られる結果は保守性の 高いものとなる。同試験を3個の超小型の破壊靭性試験 片によるそれに置換えられれば、必要な材料の体積は 1/8、得られる試験結果は破壊靭性そのものとなること から、監視試験片の有効活用のみならず、シャルピー試 験結果から破壊靭性に換算する際の不確実性を排除する ことにより評価精度の向上にも貢献できる。電中研では、 超小型の破壊靭性試験片を用いて保守的なスクリーニン グ基準の合否を判定する方法の開発をステップ1、上部 棚の破壊靭性を直接評価する方法の開発をステップ2と して評価法の開発を進めている。

ステップ1では、既に健全性評価規格[7]に記載され ている Cv と破壊靭性の関係式を一部変更^{注3)}し、超小 型試験片で得た破壊靭性から Cv を保守的に推定する式 を提案した[8]。Cv =245Jの実力を有する、ある RPV 材 料を用いたテストケースでは、超小型の破壊靭性試験片 の結果から換算した Cv は 178J となった。この値は実 力値を大きく下回る保守的な値であるが、スクリーニン グ基準である 68J より大幅に高い。現行のシャルピー試 験片の代替を小さな試験片で実施できる可能性を示して いる。

ステップ2では、上部棚における破壊靭性の寸法依存 性の補正法を検討した。上部棚の破壊靭性は、その評価 規格 [9] の有効範囲内では顕著な試験片寸法の依存性が 無い。しかし超小型試験片ほどに小さな試験片を評価に 用いる場合には、有効範囲を逸脱するデータも評価に準 用することが必要となり、この範囲では、大きな試験片 で測った材料の実力値より超小型試験片で得た破壊靭性 が低くなる。このことはステップ1における保守性の担 保には貢献するが、ステップ2で精確な破壊靭性評価を 行う際には補正が必要となる。電中研では、規格の有効 範囲を逸脱するデータについても寸法依存性が生じにく い破壊靭性評価式を提案した [10]。図2は規格 [9] に定 められた評価式(破線)と電中研の提案式(シンボル)を用 いて得られた破壊靭性を比較して示す。寸法の異なる1 インチ (25.4mm) 厚さ、0.5 インチ (12.7mm) 厚さの試験 片と板厚 4mm の超小型試験片で寸法依存性が大幅に低 減していることが分かる。

現在、より広範な材料に対する適用性の確認を行う検 討を継続している。最終的には規格化し監視試験で採用 されることを目指している。

3. シアパンチ試験による降伏応力の評価

3.1 シアパンチ試験の概要

RPVの材料が中性子照射を受けると降伏応力が上昇 (硬化)し、これに付随して破壊靭性が低下する。従っ て照射後の降伏応力の評価も監視試験項目の一つであ り、引張試験片が RPV 内部に収められている。引張試 験片の標点部寸法として直径 12.5mm、長さ 60mm が推 奨されており、引張負荷を加えるための掴み部を含めば さらに大きな寸法となる。引張試験を代替する手法とし て、電中研ではシアパンチ試験 [11]の可能性を研究し

注2) 米国単位系で50ft・lb に相当する。十分に保守的で切りの良い基準として与えられた数字である。

注3) 規格に記載されている式は Cv から破壊靱性を保守的に推定 するためのものであり、破壊靱性から Cv を逆算する際の保 守性は担保されない。これを解決するために係数を一つ追加 した。大きな寸法(厚さ12.7mm)の試験片による破壊靱性と シャルピー試験結果を用いて係数を決定することで、超小型 の試験片を用いた場合に保守性が担保されるようになった。

ている。シアパンチ試験とは、概要を図3に模式的に示 すとおり、直径8mm、厚さ0.5mmという小型円板の外 周近傍を上下から固定し、円板の中央部(直径3mm)を せん断により打ち抜く際の変位と荷重を測定する試験で ある。せん断応力と降伏応力には理論的に相関があるこ とから、シアパンチ試験結果から換算して降伏応力を推 定できる。電中研では汎用の引張試験機に専用治具を追 加することでシアパンチ試験が実施できるよう技術開発 を行った。この専用治具を用いれば、これまで監視試験 を実施してきた試験機関であれば容易にシアパンチ試験 を実施することができる。

3.2 シアパンチ試験による降伏応力の推定

幾つかの研究機関でシアパンチ試験法の検討がなされ てきたが、シアパンチ試験結果から降伏応力への換算係 数は理論値と異なり、また試験機関、試験装置によって も異なっていた。電中研はその要因を明らかにするた め、試験片の厚さ、表面仕上げ、治具とパンチャーの隙 間(クリアランス)をパラメータとして、降伏応力の異な る6種の材料に対して系統的な試験を実施した。その結 果、表面仕上げの影響は大きくないものの、試験片厚さ とクリアランスの比(クリアランス比)に大きく影響を受 けることを明らかにした。照射材を扱う監視試験で治具 の寸法を厳しく要求し維持するのは困難であり、また試 験片厚さの管理も簡単では無い。そこで試験片厚さとク リアランスを実測の上、クリアランス比に応じた補正を 行って降伏応力を推定することとした。図4は同手法で 推定した降伏応力と引張試験で実測した降伏応力を比較 して示す。プロットは推定値と実測値が等しい45度の 直線上に位置し本手法による補正が本試験の範囲内では 良好に実施できたことを示している。

今後、照射材も含めた様々な材料に対し同手法の適用 性を確かめていく。また電中研の試験治具は RPV の運 転温度から極低温までの温度範囲で試験が実施可能であ り、広範な温度範囲での降伏応力推定への同手法の適用 性を検討していく。

4. おわりに

本稿では、圧力容器の健全性評価での使用を念頭にお いた超小型試験片による試験技術について、研究開発状 況を紹介した。貴重な監視試験片の有効活用と評価精度 の向上に向け、電力中央研究所では研究開発を継続して いく。

参考文献

- 日本電気協会 電気技術規程,"原子炉構造材の監視試 験方法", JEAC 4201-2007 [2013 年追補版],(2014).
- [2] Miura, Soneda, "Evaluation of Fracture Toughness by Master Curve Approach Using Miniature C(T) Specimens," ASME J. of PVT 134-021402, DOI: 10.1115/1.4005390, (2012).
- [3] Wallin, K., "The Scatter in KIC Results," Engineering Fracture Mechanics, 19, (1984), pp. 1085-1093.
- [4] Yamamoto, M., et. al., "International Round Robin Test on Master Curve Reference Temperature Evaluation Utilizing Miniature C(T) Specimen," ASTM STP1576, STP157620140020, (2015).
- [5] ASTM International, "Standard Test Method for Determination of Reference Temperature To, for Ferritic Steels in the Transition Range," ASTM E1921-20, (2020).
- [6] 日本電気協会 電気技術規程,"フェライト鋼の破壊靱 性参照温度 To 決定のための試験方法", JEAC 4216 -2015,(2015).
- [7] 日本電気協会 電気技術規程,"原子炉圧力容器に対する供用期間中の破壊靭性の確認方法", JEAC 4206-2016,(2016).

- [8] 信耕,山本,"ミニチュア C(T) 試験片による上部棚破 壊靭性の評価 一延性亀裂進展抵抗の試験片寸法依存 性と監視試験の代替手法としての可能性一,"電力中 央研究所報告 Q19002, (2020)
- [9] ASTM International, "Standard Test Method for Measurement of Fracture Toughness," ASTM E1820-20b, (2020).
- [10] 信耕,山本,"ミニチュア C(T) 試験片を用いた上部 棚破壊靭性の評価-塑性拘束の評価および寸法効 果補正手法の提案-,"電力中央研究所報告 Q20006, (2021)
- [11] Lucas, G.E., "The development of small specimen mechanical test techniques," Journal of Nuclear Materials, 117, p.327 – 339 (1983).

(2021年5月14日)

著者紹介

著者:山本 真人 所属:電力中央研究所 材料科学研究所構造材料領域 専門分野:破壊力学

著者:小林 知裕 所属:電力中央研究所 材料科学研究所構造材料領域 専門分野:照射損傷評価

著者:信耕 友樹 所属:電力中央研究所 材料科学研究所構造材料領域 専門分野:破壊力学