マイクロ波を用いた配管広域一括探傷技術の エルボ付配管への適用性評価

Evaluation of the Applicability of a Nondestructive Testing Method using Microwaves to the Long-range Inspection of a Pipe with a Bend

東北大学	魚下 昇也	Shoya UOSHITA	
東北大学	佐々木 幸太	Kota SASAKI	
東北大学	片桐 拓也	Takuya KATAGIRI	
東北大学	遊佐 訓孝	Noritaka YUSA	Member
東北大学	橋爪 秀利	Hidetoshi HASHIZUME	Member

This study evaluates the applicability of a nondestructive testing method using microwaves to the long-range inspection of a pipe with a bend. Experimental verifications were performed using four 1 m pipes, with an inner diameter of 23 mm, connected with flanges and a 90-degree bend. The experimental verifications confirmed clear reflections due to artificial wall thinning, simulated by a short pipe with an inner diameter larger than 23 mm, even when the wall thinning was situated directly below the bend.

Keywords: electromagnetic nondestructive testing, wall thinning, finite element simulation, network analyzer

1. 緒言

配管の信頼性の担保はプラントの保全活動における重 要課題の一つであることを鑑み、マイクロ波を用いた配 管の広域一括探傷技術が提唱・開発されている。これは 配管内にマイクロ波をパルスとして入射・伝播させたと き、管壁のきずがマイクロ波を反射しうることを利用し、 入射部位において測定されるマイクロ波の反射波から管 壁の広域一括探傷を行うというものである。

これまでに管内に効率的にマイクロ波エネルギーを入 射させるための技術[3]や反射波を明瞭化するための技術 [4]等について開発が行われ、7mの単管に人為的に加工 したスリットから明瞭な信号を得ることにも成功してい る[5]。しかしながらその一方、これまでの検討は直管を 対象としたものが大半であり、曲がり部を有する配管に 対する適用性検討[6]はほとんど行われていない。当該技 術の実機適用を想定した場合、適用可能部位、探傷可能 範囲検討のためには、曲がり部の影響を評価することが 必要である。

本稿においては、以上の状況を鑑みて実施された、マ イクロ波を用いた配管広域一括探傷技術に対する、配管 の曲がり部の影響評価試験結果を報告する。

2. エルボ付き配管に対するマイクロ波探傷法 適用性評価試験

2.1 試験体系及び試験条件

本研究において実施した評価試験の実験体系図を Fig. 1 に示す。対象は長さ1m、内径23 mmの真鍮製短管を4 本フランジ接続したものであり、接続部のうち1箇所に 曲率半径 39.1 mmの90度エルボを挿入することで、曲が り部を有する配管を模擬している。また、減肉の模擬は、 図中黒三角で示したエルボ直後の箇所に、長さ50 mm、 内径23 もしくは25 mmの短管を挿入することで行い、 管端部から入射されたマイクロ波のこの減肉による反射 波の評価を行った。

マイクロ波の発振と受信にはネットワークアナライザ (Agilent Technology 社製 E8363B)を用い、マイクロ波はフ レキシブルケーブル(潤工社製 MWX051)およびコネクタ ー(Anritsu 社製 K101F-R)内を TEM モードにて伝播した後、 管端部に取り付けられたマイクロ波プローブより、管内 に主として TM01 モードとして発振される。

測定は周波数領域において行い、測定された信号に対して逆フーリエ変換を施すことで、パルスとして管内に発振されたマイクロ波の反射波を評価した。測定に用いたのは10~18 GHz の 1,601 周波数であり、信号明瞭化の

連絡先:遊佐訓孝、〒980-8579 宮城県仙台市青葉区荒 巻字青葉 6-6-01-2、東北大学量子エネルギー工学専攻 E-mail: noritaka.yusa@qse.tohoku.ac.jp

ため測定信号は30回の平均化を行った。

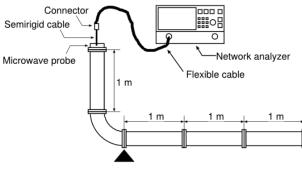
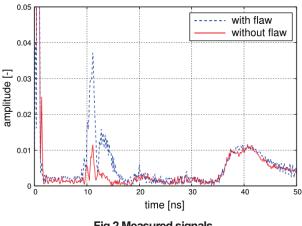



Fig.1 Experimental setup

2.2 試験結果

得られた試験結果の一例を Fig.2 に示す。図中 with flaw とあるのが深さ1mmの全周減肉に相当する内径25mm の単管を挿入した場合、without flaw とあるのは配管の口 径と同じ内径23mmの短管を挿入した場合の信号である。 両者には、約11nsにおける反射波に明瞭な差異を確認す ることができる。測定時のネットワークアナライザの校 正条件より 0 ns における大きな反射波は管端部に取り付 けられたマイクロ波プローブにおける反射であるといえ、 また(マイクロ波を入射したのとは逆の)管端部を真鍮 盤で封止した場合に有意な変化が確認されたことから約 35 ns 以降のなだらかな反射波は管端部からのものという ことができる。よって、短管挿入位置を鑑みると11 ns に おける反射波は模擬減肉からの信号としてその Time of Flightからも妥当なものであるということができる。

Fig.2 Measured signals

3. 結言

マイクロ波を用いた配管広域一括探傷技術の、曲がり 部を有する配管に対する適用性評価試験を実施した。長 さ約4mの配管の90度曲がり部後方に配置した模擬全周 減肉からの明瞭な反射波を確認することに成功し、当該 技術が直管のみならず曲がり管に対しても適用可能であ ることを確認した。

謝辞

本研究は科学研究費補助金(15K14298)及び日本学術振興 会特別研究員奨励費(H264906)の助成を受けました。

参考文献

- [1] K. Sugawara, H. Hashizume, S. Kitajima, "Development of NDT method using electromagnetic waves", JSAEM Studies in Applied Electromagnetics and Mechanics, Vol. 10, 2001, pp. 313-316.
- [2] H. Hashizume, T. Shibata, K. Yuki, "Crack detection method using electromagnetic waves". International Journal of Applied Electromagnetics and Mechanics, Vol. 20, 2004, pp. 171-178.
- [3] Y. Ju, L. Liu, M. Ishikawa, "Quantitative evaluation of wall thinning of metal pipes by microwaves", Materials Science Forum, Vol. 614, 2009, pp. 111-116.
- [4] Y. Sakai, N. Yusa, H. Hashizume, "Nondestructive evaluation of wall thinning inside a pipe using the reflection of microwaves with the aid of signal processing", Nondestructive Testing and Evaluation, Vol. 27, 2012, pp. 171-184.
- [5] K. Sasaki, T. Katagiri, N. Yusa, H. Hashizume, "Demonstration of the applicability of non-destructive microwave testing to the long-range inspection of a crack appearing at the inner surface of a pipe", Materials Transactions, Vol. 58, 2017, pp. 692-696.
- [8] K. Abbasi, N.H. Motlagh, M.R. Nematollahi, H. Hashizume, "Detection of axial crack in the bend region of a pipe by high frequency electromagnetic waves", International Journal of Pressure Vessels and Piping, Vol. 86, 2009, pp. 764-768.