振動を伴う環境下における渦電流を用いためっき厚測定

Measurement of Plating Thickness with Vibration by Eddy Current

小坂 大吾	Daigo KOSAKA	Member
守安 奎裕	Keisuke MORIYASU	Non Member
柿下 和彦	Kazuhiko KAKISHITA	Non Member
橋本 光男	Mitsuo HASHIMOTO	Member
小山 文雄	Fumio KOYAMA	Non Member
	守安 奎裕 柿下 和彦 橋本 光男	守安 奎裕Keisuke MORIYASU柿下 和彦Kazuhiko KAKISHITA橋本 光男Mitsuo HASHIMOTO

Abstract. This paper is motivated by the desire to evaluate thickness of zinc layer on steel in a manufacturing process of zinc plating. A short distance between a blower for blowing liquid zinc and a sensor for measuring thickness of the layer, and a long distance between the sensor and test samples are required in the process. We have tried to apply the eddy current testing for measuring thickness of a zinc layer with vibration. This paper shows the calculated phase dependencies of an eddy current sensor on the thickness and the liftoff.

Keywords: Eddy current testing, Zinc layer, Measuring thickness, Vibration

1. 緒言

亜鉛めっきは鋼板を腐食から守るためによく使われて いる。その厚さはめっきのコストと腐食の防止効果に影 響を与える。したがって、鋼板のめっき厚は管理されて いなければならない。現在、非破壊的なめっき厚の測定 には蛍光 X 線や渦電流試験が適用されている。特にめっ き製造ラインでは、高リフトオフに対応可能な蛍光X線 が用いられている。このめっき工程においてめっき厚を 管理にするにはめっき厚の測定結果をめっき厚制御装置 ヘフィードバックする必要があり、めっき厚測定装置を 制御装置の近くにおきたい欲求がある。しっかしながら、 蛍光 X線は装置が比較的大型であるため、制御装置から 数十 m 下流に設置されている。一方で、渦電流試験は絶 対値測定に劣るがセンサの小ささから測定の自由度が高 い。しかしながら、ほぼセンサを試験体に接触して測定 する必要がある[14]。めっき工程では鋼板が振動を伴って 移動しているため、センサはめっき面から数十mm離す 必要があり、既存の渦電流試験法の適用は困難である。

本研究では高リフトオフ環境下で振動を伴うめっきエ

程においてめっき厚の測定が可能な渦電流試験の適用方 法について検討を行う。まず、めっき厚とリフトオフの 変動が測定結果に与える影響について数値解析を用いて 考察する。次に、数値解析により得られた知見を実験で 確認する。これにより、めっき工程への渦電流試験の提 要可能性を示す。

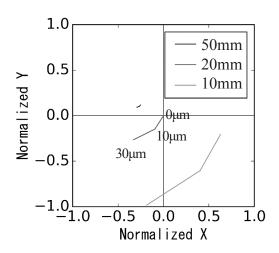
2. 数值解析

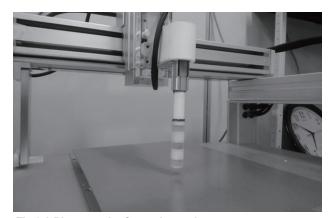
数値解析を用いてめっき厚とリフトオフの変動による 位相特性の評価を試みた。試験体は厚さ1mmの鋼板表面 に数 µm の亜鉛層を持つ。センサは相互誘導差動型を用 いた。使用したパラメータと値をTable1に示す。解析は 周波数応答解析 joo 法を軸対象で行った。解析モデルの詳 細については発表で述べる。Fig. 1 は励磁周波数 10kHz の時の解析結果をまとめたものである。リフトオフが 50mm のとき、めっき厚の信号変化は小さく、リフトオ フが小さくなるにつれ、めっき厚の信号変化が大きくな っていることが確認できる。一方で、リフトオフが変化 するときの位相の方向と、めっき厚が変化するときの位 相の方向が異なっている。これらの位相の差は周波数に よって異なることを数値解析で確認した。このことは、 適切な周波数を選択することで、リフトオフ信号とめっ き厚信号を分離して測定できる可能性を示している。

連絡先:名前、〒187-0035 東京都小平市小川西町 2-32-1、職業能力開発総合大学校 E-mail: kosaka@uitec.ac.jp

Table 1 A list of the simulation conditions

Plating thickness	0, 10, 30µm
Liftoff	10, 20, 50mm
Excitation frequency	1, 10, 100Hz




Fig.1 Normalized simulation results at 10 kHz

3. 測定結果

実験に用いた装置を Fig. 2 に示す。実際のラインでは 製品が振動するが、本稿においてはセンサ側をリフトオ フ 10±1mm、約 2Hz で振動させた。渦電流試験器は周波 数を 10kHz に設定し、リフトオフ信号が渦電流試験器の X 成分に現れるよう移相器の位相を設定した。めっき厚 が 0,6,23µm の試験体を交換しながら測定を行った。測定 結果を Fig. 3 に示す。めっき厚に応じて Y 成分の信号が 変化していることが確認できる。

4. 結言

高リフトオフかつ振動を伴うめっき工程を想定した環 境で、渦電流試験によるめっき厚の測定を試みた。渦電 流試験の測定結果に与えるめっき厚とリフトオフの変動 の影響を数値解析により評価した。これらの影響は周波 数によって位相が変化し、その位相差が90度に近い値に なる周波数範囲を求めた。実験において、その周波数範 囲にある周波数を用いてめっき厚の異なる試験体を測定 した。結果、めっき厚とリフトオフの変化に相関がある

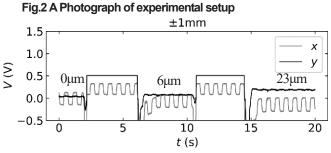


Fig.3 Measured waveforms with ±1mm vibration at 10 kHz

信号を分離して測定できることを確認した。これにより、 めっき工程で渦電流試験を用いためっき厚測定の可能性 を示すことができた。

今後は、センサ形状の最適化について検討を行い、よ り高リフトオフ環境下における適用可能性について検討 を行う。

参考文献

- John C. Moulder, Erol Uzal, and James H. Rose, Thickness and conductivity of metallic layers from eddy current measurements, Review of Scientific Instruments 63, 6 (1992), 3455-3465.
- [2] L. B Pedersen, K-Å. Magnusson, and Y. Zhengsheng, Eddy current testing of thin layers using co-planar coils, Research in nondestructive evaluation 12, 1 (2000), 53-64.
- [3] Cheng-Chi. Tai, Characterization of coatings on magnetic metal using the swept-frequency eddy current method, Review of Scientific Instruments 71, 8 (2000), 3161-3167.
- [4] Bruchwald, Oliver, et al. Applications of High Frequency Eddy Current Technology for Material Characterization of Thin Coatings, Journal of Materials Science and Engineering A 6, 7-8 (2016), 185-191