Intergranular Stresses of Austenitic Stainless Steel due to Plastic Deformation

新潟大学	鈴木	賢治	Kenji Suzuki	Member
原子力機構	菖蒲	敬久	Takahisa Shobu	Member

The plate specimen of austenitic stainless steel was prepared, and a plastic strain of 2.8% was applied to the specimen under uniaxial tension. The residual stresses of the specimen were measured by $\cos^2 \chi$ method using 220, 400, 331, and 620 lattice planes. For lattice planes with a lower atomic density, the $2\theta \cdot \cos^2 \chi$ diagram showed an upward warp. For lattice planes with a higher atomic density, the $2\theta \cdot \cos^2 \chi$ diagram showed a downward warp. This phenomenon was caused by intergranular strains. The strain distribution for each lattice plane was measured in the direction from 0° to 180° with a step of 5°. As a result, the strain of the lattice plane for a low atomic density balanced with that for a high atomic density in the directions of a principal stress and a principal shearing stress.

Keywords: X-Ray Stress Measurement, Inter-granular Strain, Plastic deformation, Micro-stress, Austenitic Stainless Steel, $\cos^2 \chi$ method

1. 緒 言

結晶弾性異方性を持つ結晶子の互いの方位差により 生ずる微視的応力は粒間応力と言われ,粒間ひずみは 格子面 (回折面)によるひずみ差,すなわち格子面依存 性を持つ.その微視的残留応力としての粒間ひずみは, 塑性変形によって発生する.これまで,オーステナイト 系ステンレス鋼の塑性変形を伴う応力-ひずみ挙動を中 性子を利用したその場観察により,多結晶体の弾性異 方性,格子面依存性を研究してきた^[1,2].これらの一 方向引張による変形挙動の研究では,弾性異方性が相 互作用しながら変形することが確かめれている.結晶 弾性異方性の挙動をセルフコンシステントモデルによ り説明する研究もある^[3].

粒間ひずみの発生が,残留応力の形成にどのように影響しているかを研究するために,著者らは,多数の格子 面を利用して塑性変形による残留応力を測定し,塑性 変形量,ひずみ速度と格子面依存性について研究した [4-6] . 塑性による残留応力は格子面により大小の傾向 があり,それは Kröner モデルによる回折弾性定数で説 明することができる.その格子面依存性は,ウォーター ジェットピーニングを受けた面においても同様の傾向が 認められた^[6] .これらのことは,オーステナイト系ス テンレス鋼の微視的残留応力は,結晶異方性と塑性変 形により発生することを示している.

一方,これまでの塑性変形による微視的残留応力の 格子面依存性の研究は,引張方向とその垂直方向にお ける格子面依存性を研究してきた.しかし,粒間応力が 多結晶体の中でどのように釣り合っているのか,その全 体像を捉えたわけではない.本研究では,単軸塑性変形 させた平板試験片を用意して,変形方向に対して方位を 変化させながら各格子面ひずみを測定した.その結果, 塑性変形による粒間ひずみの挙動がわかったので報告 する.

2. 実験方法

2.1 材料および試験片

本研究の試験片の材料として、オーステナイト系ス テンレス鋼 SUS316L を用いた. 試験片を Fig. 1 に示す 寸法に機械加工した後,表面をバフ研磨にて仕上げた. さらに、ひずみ取り焼きなましのために、試験片を 913 K に 10 min 保持した後,炉冷した. 試験片の結晶粒径 は 55 μ m である. この試験片とは別に引張試験を行い, 耐力 $\sigma_{0.2} = 202$ MPa,引張り強さ $\sigma_B = 523$ MPa,伸び 81%を得た.

万能引張試験機を用いて試験片に単軸引張の塑性変

Fig. 1. Dimensions of test specimen.

Fig. 2. Uniaxial tension of specimen.

連絡先: 鈴木賢治

^{〒 950-2181} 新潟市西区五十嵐 2 の町 8050、新潟大学教育学部 E-mail: suzuki@ed.niigata-u.ac.jp

形を与えた. 試験片の評点間距離は 50 mm,引張速度 は 200 mm/min であり,その時のひずみ速度 $\dot{\epsilon}$ は 6.67 × 10^{-2} /s となる. 引張試験における応力とひずみの関係 を Fig. 2 に示す. 単軸引張の除荷後の伸びを測定し,塑 性ひずみ $\varepsilon_p = 2.8\%$ を得た.

Kröner モデルは実際の回折弾性定数とよく一致する ので^[7],本研究ではKröner モデルを用いて機械的ヤン グ率を計算し 194.7 GPa を得た.なお,SUS316L 単結 晶のスティフネス c_{ij} は文献値 ($c_{11} = 206, c_{12} = 133, c_{44} = 119$ GPa)を用いた^[8].また,各回折による応力 計算にも Kröner モデルによる回折弾性定数を用いた. Kröner モデルによる回折弾性定数を用いた.

2.2 $\cos^2 \chi$ 法

所定の塑性ひずみを与えた平板試験片の回折面ごと の応力を測定するのにふさわしい方法として $\cos^2 \chi$ 法 がある^[9]. $\cos^2 \chi$ 法は,高エネルギー放射光X線の高 輝度かつ透過力を利用して透過法にてX線回折を測定 する. $\cos^2 \chi$ 法は無ひずみの回折角 θ_0 を必要としない こと, $\cos^2 \chi \approx 0 \sim 1$ の広い範囲で測定できること,粗 大粒対策として z 軸回転による揺動効果が期待できる などの利点がある.

 $\cos^2 \chi$ 法は、Fig. 3 に示すように $\chi \rho \nu - \nu \nu \epsilon$ 回転させ透過法で回折を測定し、面内回転によるひずみの変化から応力を評価する方法である.ここでは、z軸が主応力方向と一致していると仮定し、平面応力状態として応力-ひずみの関係を導く. χ だけ回転したとき、透過法で測定されるひずみ ϵ_{χ} は、

$$\varepsilon_{\chi} = \varepsilon_1 \cos^2 \chi + \varepsilon_2 \sin^2 \chi \tag{1}$$

で与えられるので,次の関係が得られる.

$$\varepsilon_{\chi} = \frac{1+\nu}{E} \left(\sigma_1 \cos^2 \chi + \sigma_2 \sin^2 \chi \right) - \frac{\nu}{E} (\sigma_1 + \sigma_2) \quad (2)$$

ひずみと回折角の関係は

$$\varepsilon_{\chi} = -(\theta_{\chi} - \theta_0) \cot \theta_0 \tag{3}$$

で与えられるので,基礎式は次式となる.

$$2\theta_{\chi} - 2\theta_0 = -\frac{2(1+\nu)}{E} \tan \theta_0 \left(\sigma_1 \cos^2 \chi + \sigma_2 \sin^2 \chi\right) \\ + \frac{2\nu}{E} \tan \theta_0 \left(\sigma_1 + \sigma_2\right)$$
(4)

Table 1. Diffraction elastic constants for SUS316 by Kröner model.

		Mechanical			
	400	331	220	620	
E, GPa	144.1	217.4	209.7	164.9	194.7
ν	0.347	0.269	0.277	0.325	0.294

Fig. 3. Configuration for $\cos^2 \chi$ method.

なお,この式は, $\sin^2 \psi$ 法の基礎式において $\psi = \pi/2$ の時に相当する.単軸応力 ($\sigma_2 = 0$)を仮定したとき,基礎式 (4) は

$$2\theta_{\chi} - 2\theta_0 = -\frac{2(1+\nu)}{E} \tan \theta_0 \sigma_1 \cos^2 \chi + \frac{2\nu}{E} \tan \theta_0 \sigma_1$$
(5)

となり、 $\cos^2 \chi$ で偏微分して

$$\frac{\partial 2\theta_{\chi}}{\partial \cos^2 \chi} = -\frac{2\left(1+\nu\right)}{E} \tan \theta_0 \,\sigma_1 \tag{6}$$

から

$$\sigma_{1} = K M$$

$$K = -\frac{E}{2(1+\nu)} \cot \theta_{0}$$

$$M = \frac{\partial 2\theta_{\chi}}{\partial \cos^{2} \chi}$$
(7)

が得られ、 2θ -cos² χ 線図の傾き M から応力 σ_1 を求め ることができる.

2.3 放射光によるX線回折測定

 $\cos^2 \chi$ 法は透過法であり,板厚 3 mm を透過するため には,高エネルギーかつ高輝度のX線を必要とする.本 研究では,大型放射光施設 SPring-8 を利用して $\cos^2 \chi$ 法を実施した.ビームラインは日本原子力研究開発機構 専用ビームライン BL22XU にて実験を行った.その時 のX線条件を Table 2 に示す.透過力を持つように 66.40 keV の高エネルギーX線を利用した.粗大粒の影響を避 けるため,試験片を長手方向のz軸中心に回転をかけな がら回折を測定した.設定した $\cos^2 \chi$ の値は, 0.0 ~ 1.0 の広い範囲で 0.2 ステップにてゴニオメータにて回折 を測定した.結晶弾性異方性による微視的残留応力を 測定するために,複数の回折面を測定する必要がある. $\cos^2 \chi$ 法による測定においては,220,400,331,620 の4つの回折を用いて応力を測定した.

さらに, 塑性変形による粒間ひずみの方位による挙動を調べるために, 440 (220), 400, 331, 620 の各

Table 2. Conditions for stress measurements using $\cos^2 \chi$ method.

Beam line	BL22XU		
Wavelength	66.40 keV (18.66 pm)		
Divergent slit $(h \times w)$	$1.0{ imes}0.2~{ m mm}^2$		
Receiving slit 1, 2 ($h \times w$)	$1.0{ imes}0.2~{ m mm}^2$		
Rotation speed	0.2 Hz		
Method	$\cos^2 \chi = 0 \sim 1$		

Table 3. Conditions for synchrotron X-rays at BL02B1.

Beam line	BL02B1		
Wavelength	72.312 keV (17.183 pm)		
Divergent slit $(h \times w)$	$0.5 imes 5 \ \mathrm{mm^2}$		
Receiving slit	Soller slit		
χ -cradle	$0^{\circ} \sim 180^{\circ} \text{ (step } 5^{\circ}\text{)}$		
Rotation	0.5 Hz		

回折面ごとに,試験片の方位角 χ によるひずみ分布を 測定した.使用したビームラインは,大型放射光施設 SPring-8 の高輝度光科学研究センターの共用ビームラ イン BL02B1 である.その測定条件を Table 3 にまと めた.ビームライン BL02B1 は,偏向電磁石による光 源なので,前述の挿入光源を持つ BL22XU よりもX線 の強度が小さいが,スリットの幅を 0.5×5.0 mm² に広 げ,ゴニオメータの受光側にソーラスリットを装着して シンチレーションカウンターにて回折曲線を測定した. この場合も粗大粒の影響に配慮して試料を z 軸回りに 0.5 Hz で回転させた.

3. 結果および考察

3.1 微視的ひずみと回折面依存性

2.8%の塑性変形を与える前に,試験片に残留応力が ないことを確認するために, $Mn-K\alpha$ 特性X線による311 回折を利用して残留応力測定を行った.その 2θ -sin² ψ 線図を Fig. 4 に示す.測定された応力は -2.5 ± 26.3 MPa, であり,試験片にはマクロな残留応力は見られな かった.

その試験片に前述のように単軸引張の塑性変形を与 えた後の顕微鏡写真を Fig. 5 に示す. 図の水平方向が 引張方向に相当する. 試験片表面には塑性変形による 結晶粒ごとの凹凸が現れ, すべり帯および双晶も観察 される. 結晶粒の回転や伸びは見られず,本試験片の 塑性ひずみ $\varepsilon_p = 2.8\%$ は, 微視的残留応力の影響が現 れやすい塑性変形量である.

実験方法で説明した $\cos^2 \chi$ 法により $0.0 \sim 1.0$ の広 い範囲で前述の試験片の $\cos^2 \chi$ 線図を作成した. 測定 に使用した回折は, 220,400,331 および 620 である. その結果を Fig. 6 に示す. 図に示すように,回折面によ り凹凸の湾曲が明瞭に見られる.等方均質な連続体であ

Fig. 4. $2\theta - \sin^2 \psi$ diagram before plastic deformation.

Tensile direction

Fig. 5. Microstructure of specimen after plastic deformation.

れば、一様に塑性変形した後に除荷されているので、巨 視的な応力は存在しないはずである.ゆえに、2 θ -cos² χ 線図は、水平な直線の関係を示すのが理想的である.図 6の2 θ -cos² χ 線図を見る限り大きな傾きはなく水平に 近いので、巨視的応力は見られない.しかし、2 θ -cos² χ 線図には直線関係はなく、湾曲の関係がみられる.例 えば、400 および 620 回折は上に凸であり、220 およ び 331 回折は下に凸となっている.図に見られるよう に、2 θ -cos² χ 線図の関係に湾曲が現れる原因は、結晶 弾性異方性に起因する微視的ひずみによるものと考え られる.

以前,オーステナイト系ステンレス鋼の塑性変形に よる微視的残留応力と格子面依存性について調べたと き,微視的残留応力の正負(大小)は回折弾性定数Eの 大小に関係することを明らかにした^[4-6].今回の実験 においては,回折弾性定数が小さい400および620回 折の 2θ -cos² χ の関係は上に凸であり,回折弾性定数の 大きい220および331回折はそれの関係が下に凸を示 した.

Fig. 6. 2θ -cos² χ diagram after plastic deformation.

以上の 2θ -cos² χ 線図の彎曲は微視的ひずみの影響の 現れであり, 微視的ひずみは塑性変形方向に対する方位 χ による影響があること示唆している. つまり, cos² χ 法においては, 散乱ベクトルの方位 χ の変化による格 子ひずみの変化から巨視的応力を測定する. その χ の 変化による格子ひずみの変化は, 巨視的応力だけでな く, 粒間ひずみの影響も含まれることを意味する.

3.2 微視的残留応力のつり合い

Fig. 6 の 2θ -cos² χ 線図に彎曲が生じていることから, 各格子面における方位角 χ による格子ひずみの変化挙 動を測定し, 微視的残留応力がどのようになっているか を検討した. 散乱ベクトルの方位 χ を 0° から 180° へ 5° ステップで変化させ, Table 3 に示す条件で,各格子 面を用いて逐次回折曲線を測定した.使用した回折は 3.1 節で測定した回折角を利用したが,220回折につい ては角度が低いので,ひずみ感度に配慮してより高角 度にある等価な 440 回折を利用した.

方位角 χ に伴う格子面ごとの格子定数 $a_{hk\ell}$ の変化を Fig. 7に示す. この図では格子面間隔の差を補正するために,測定した回折角度 2θ から格子面間隔 $d_{hk\ell}$ を求め,それを格子定数に変換している.

Fig. 7の結果だけでは,複雑でよく判断できないので, 方位 χ とひずみの点対称性を利用して,0°から180°ま での格子定数と180°から0°までの格子定数との平均操

Fig. 7. Change in diffraction angle with change in χ angle.

作により平滑化した. さらに、3 点移動平均によりノイ ズを除去した結果が、Fig.8となる. Fig.6の $\cos^2 \chi$ 線図 のパターンで回折角 2 θ の変化が対照的な組み合わせと して $\cos^2 \chi$ 線図の変化が凹と凸の組合せを考え、Fig.8 (a)には440回折と620回折の組合せ、Fig.8(b)には 400回折と331回折の組合せを示す.なお、格子ひず みの計算においては、便宜的に各回折面の0°から180° までの格子定数の平均値をその回折の無ひずみの格子 定数と定義した.

Fig. 8 (a) を見ると、440 回折と620 回折の格子ひず みは、 χ 角の変化に対応してあたかも正負を補い合うよ うに変化している.400 回折と331 回折の回折の組合 せについても、同様に、格子ひずみの関係は相補的関

Fig. 8. Strain distribution for each diffraction.

係にある.このことは,その依存性は回折弾性定数の 大きい格子面と小さい格子面でつり合っていることを 示唆している.Fig.8に見られるように,弾性異方性に 基づいて結晶粒には微視的ひずみ(粒間ひずみ)が生じ ている.その粒間ひずみは無秩序に一様分布するので はなく,回折ごとに方位角χの依存性を有しながら分 布しいる.

粒間ひずみによる格子面の系統的依存性は,回折角 の測定に影響するので,回折角の方位依存性を利用し て応力を測定するX線応力測定においては,結晶弾性 異方性の大きい材料では,粒間ひずみの影響を考慮す る必要がある.Fig.8の粒間ひずみの分布が原因となり, Fig.6に示したように湾曲が生ずる.それゆえ, $\cos^2 \chi$ の範囲によっては, $\cos^2 \chi$ 線図の傾きに影響する.また, $\sin^2 \psi$ においても同様の問題が生じる.粒間ひずみの大 きい格子面においては, $\sin^2 \psi$ の範囲により $\sin^2 \psi$ 線 図の勾配や湾曲が生じる.塑性変形による残留応力の 大小が,回折弾性定数の大小と関係していることを既 報で指摘した報告してきたが^[4-6],その原因は粒間ひ ずみの方位角 χ の依存性によるものである.

さて,前述のように粒間ひずみの影響を格子面のひ ずみの分布で表現してきたが,応力分布で改めて示し てみる. Fig. 8 で得られたひずみ分布を用いて,平面応 力の仮定のもとに各格子面による応力分布で表示した 結果を Fig. 9 に示す.図中の縦方向が単軸引張方向に 相当する.例えば,主応力が支配的な $\chi = 0^\circ$,90°方 位では,弾性定数の小さい400格子面は弾性変形が大 きく,その結果として引張残留応力が生じ,その反対 に弾性定数が大きい331格子面には圧縮残留応力が残

Fig. 9. Changes in stresses for lattice planes and distribution of mean stress.

Fig. 10. Deformation of crystallite due to elastic anisotropy.

る.一方, せん断変形が支配的な $\chi = 45^{\circ}$, 135°の方位 では, 弾性定数が大きい 331 格子面には引張残留応力 が生じ, 弾性定数の小さい 400 格子面には圧縮残留応 力が生じる.回折弾性定数が小さい格子面は原子密度 が小さくすべりにくい面であり,回折弾性定数が大き い格子面は原子密度が高くすべり易い面である. Fig. 9 には,400,331,440,および 620 の各格子面の応力 を平均した結果は実線で示しており,図中の破線は無 応力を示している.4つの格子面の平均応力は,無応力 を示した破線に近い.この結果は,結晶弾性異方性によ る微視的残留応力は,各方位でバランスを保っているこ とを表している.

100格子面(400格子面)と331格子面を例に考える. Fig. 10では,100格子面がソフトな格子面,331格子 面がハードな格子面として描かれている.100格子面 と331格子面とのなす角度は46.5°であるので,互い に45°で示している.図の上に示すように,ソフトな格 子面は,引張・圧縮には変形しやすく,大きな弾性変位 を示す.一方,引張方向に対して $\chi = 45°$ 方向において はせん断変形が支配的である.100格子面は,331格 子面のすべりにより容易にせん断変形できるので,弾 性変形はわずかである.図の下段に示すハードな格子 面(331格子面)では,引張変形に対して,高い弾性率 のために弾性変形は小さい.しかし, $\chi = 45°$ 方向のせ ん断変形に対しては,すべり変形がなく弾性変形を受 け持つ結果,格子面の開きが大きくなる.

以上のように,結晶子内の原子密度の高い格子面と 低い格子面が,それぞれ主応力方向とせん断方向に配 置し,引張り塑性に対してバランスを取り合っている ことが明らかとなった.

4. 結 言

本研究では、オーステナイト系ステンレス鋼 SUS316L の平板試験片に単軸引張により 2.8%の塑性変形を与え た.400、331、440、および 620 の格子面を用いて、 除荷後の試験片の微視的残留応力を調べた.得られた 結果をまとめると以下のようになる.

- 試験片の 2θ-cos² χ 線図を作成したところ,400 および 620 格子面では上に凸の関係を,331 お よび 440 格子面では下に凸の関係を示した.こ の湾曲は,粒間ひずみの影響によるものである.
- 2) 粒間ひずみの方位による挙動を明らかにするために、方位角を変えながら各格子面のひずみ分布を測定した.その結果、粒間ひずみには格子面による方位角依存性が確認された.結晶子内の原子密度の高い格子面と低い格子面が、それぞれ主応力方向とせん断方向に配置し、引張り塑性に対してバランスを取り合っている.
- 3)結晶弾性異方性の大きい材料では、格子面による 方位角依存性が現れる.格子面の方位角による変 化から巨視的応力を測定するX線法においては、 格子面による方位角依存性、すなわち粒間ひずみ があるために、微視的応力として影響する.

謝 辞

本研究は,科学研究費補助金 (No. 17K06046)の援助 を受けた.また,放射光実験は,日本原子力研究開発機 構施設共用 (2008AE12),高輝度光科学研究センター重 点産業利用課題 (2008A1766) および平成 20 年度高経年 化対策強化基盤整備事業の支援によって実施された.こ こに記して,感謝の意を表します.

参考文献

 M.R. Daymond, C.N. Tome and M.A.M. Bourke, "Measured and predicted intergranular strains in tex- ture austenitic steel ", Acta Materialia, Vol. 48, 2000, pp. 553-564.

- [2] N.J. Wagner, M.Hofmann, R.Wimpory, C. Krempazky and M. Stockinger, "Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis", Material Science & Engineering A-618, 2014, pp. 271-279.
- [3] B. Clausen, T. Lorentzen, M.A.M. Bourke and M.R. Daymond, "Lattice strain evolution during uniaxial tensile loading of stainless steel", MaterialsScience and Engineering, A-259, 1999, pp. 17-24.
- [4] K. Suzuki and T. Shobu, "Residual microstress of austenitic stainless steel due to tensile deformation", Materials Science Forum, Vol. 652, 2010, pp. 7-12.
- [5] K. Suzuki and T. Shobu, "Residual stresses in austenitic stainless steel due to high strain rate", Materials Science Forum, Vol. 681, 2011, pp. 278-283.
- [6] 鈴木賢治,菖蒲敬久,城 鮎美,"ウォータジェット ピーニングを受けたオーステナイト系ステンレス 鋼の残留応力",材料, Vol. 62, No. 7, 2013, pp. 437-442.
- [7] E. Kröner, Berechnung der elastischen Konstanten des Vierkristalls aus den Konstanten des Einkristalls, Zeiteschrift Physik, Vol. 151, 1958, pp. 504-518.
- [8] H.M. Ledbetter, "Predicted single-crystal elastic constants of stainless-steel 316", British Journal of NDT, Vol. 23, 1981, pp. 286-287.
- [9] 田中啓介, 鈴木賢治, 秋庭義明, 菖蒲敬久, "放射光 による応力とひずみの評価", 2009, p. 68, 養賢堂.