コンクリート建屋のレーザ切断工法

The laser cutting construction method of a concrete building

赤羽 崇	Takashi AKABA	Member
呉屋 真之	Saneyuki GOYA	Non-Member
森 宏樹	Hiroki MORI	Non-Member
奥田 剛久	Takehisa OKUDA	Non-Member
下鍋 典昭	Noriaki SHIMONABE	Non-Member
井上 隆司	Takashi INOUE	Non-Member
中越 淳郎	Junro NAKAGOSHI	Non-Member
	呉屋 真之 森 宏樹 奥田 剛久 下鍋 典昭 井上 隆司	只屋 真之Saneyuki GOYA森 宏樹Hiroki MORI奥田 剛久Takehisa OKUDA下鍋 典昭Noriaki SHIMONABE井上 隆司Takashi INOUE

Abstract

The demolition technics of the thick broad concrete wall of atomic power building of a Fukushima Daiichi nuclear power plant by the remote laser cutting have been developed. In this time, the outline about laser cutting technology of a concrete wall, the demolition method and equipment is introduced.

Keywords: Reactor building demolition, a concrete wall, laser cutting, remote work

1. はじめに

福島第一原子力発電所原子力建屋のコンクリート解体 を対象として、レーザを用いた遠隔解体技術を開発して いる(図1)。対象とするコンクリートの板厚は、薄い箇 所は200mm(壁)で、最も板厚の厚い箇所は1200mm(柱) もの厚みがある。これまで、原子炉や一般建築物の解体 を対象としてコンクリートのレーザ切断技術の開発が報 告されているが、1000mmを超える板厚のコンクリート 切断例はない([1]~[4])。今回、1200mmのコンク リート柱の厚板までを対象としてレーザ切断の可能性に ついて試験を実施し、検証を行なった。また、本技術を 用いた解体工法および切断装置について行なった検討結 果について紹介する。

図1 福島第一原子力発電所

連絡先:赤羽 崇 〒652-8585 神戸市兵庫区和田崎町一丁 目1番1号 三菱重工業株式会社 パワードメイン 原子力事 業部 デゴミプロジェクト室 E-mail:takashi_akaba@mhi.co.jp

2. 厚板コンクリート切断の課題

コンクリート柱はレーザビームを水平に照射させて切 断することを想定している。図2にコンクリート柱切断 のイメージ図を示す。レーザ切断は、レーザの持つエネ ルギでコンクリートを溶かし、アシストガスを使い溶融 コンクリート(ドロス)を施工点から除去することで実 現する。1000mm級の板厚を有するコンクリート切断を 実現する上で想定される主要な課題は以下の2つである (図2、3)。

- (1) 1200mm 長さのコンクリート溶融に必要なレーザ エネルギーの確保
- (2) 溶融コンクリート (ドロス) の除去

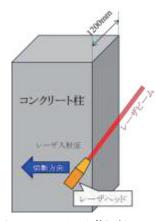


図2 コンクリート柱切断イメージ

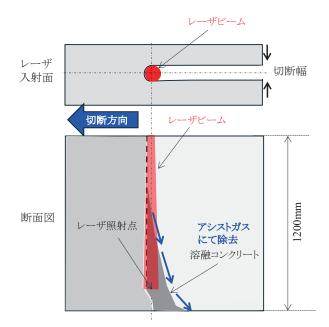


図3 厚板コンクリート切断の原理

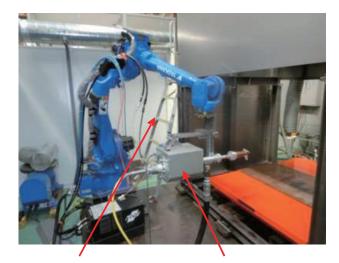
課題に対する対策としては、効率良いコンクリート溶 融の実現のため、細長いレーザビームの形成、およびド ロスの押し出しに必要なガス量を供給するための必要最 小限の切断幅の形成が必要である。

細長いレーザ光の形成として、従来の集光型による レーザビームに替えて、超長焦点レーザ光の適用を検討 した。これにより、集光スポット径は従来より大きいが、 1200mm 板厚の表面と裏面におけるビーム径がほぼ同等 で、コンクリート溶融に必要なパワー密度を維持し、切 断性能向上が期待できる。

また、溶融コンクリートの除去を促進するため、アシ ストガス流量を増大し、効果を確認した。

3. 切断試験

切断試験で用いた装置を説明する。


- レーザ発振器: 25kW ファイバレーザ装置
- レーザヘッド: MHI 開発長焦点レーザヘッド
- 駆動装置:ロボット
 - ・ 切断速度: ~12mm/min
- アシストガス: 空気
 - ガス流量: ~5000L/min

初めに切断との相関が強いと考えられるレーザパワー、 切断速度およびアシストガス流量をパラメータとして、 切断試験を実施し、切断可能なコンクリート板厚を評価 した。

試験片 試験架台

図4 切断装置全体図

ロボット 長焦点レーザ切断ヘッド図5 レーザ切断ヘッド

3.1 パワーおよびガス流量依存性 3.1.1 パワー依存性

レーザパワーの増大に従い、切断可能な板厚は厚くな るが、飽和する傾向が見られた(図6)。飽和する要因と しては、パワー増大により切断幅が増大する傾向がみら れたことから、溶融体積が増大したことで、パワー増大 による切断板厚が増大する効果が小さくなったためと推 測される。

切断幅がパワー増大により増大した理由は、熱レンズ 効果により焦点シフトが生じ、ビーム径が増大した影響 と推測される。長焦点レーザ光学系においても、レーザ の焦点位置は、熱レンズ効果を考慮して決める必要があ ることが分かった。

3.1.2 ガス流量依存性

ガス流量の増大とともにリニアに切断可能板厚が増 大した(図7)。但し、ガス流量を増大していくと、効果 が頭打ちとなった。この原因として、ガス流速が音速を 超え、流速が飽和したためと推測される。ガス流速を向 上させるため、ガスノズル形状をラバールノズル形状へ 変更することとした。

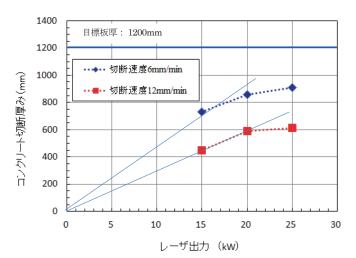
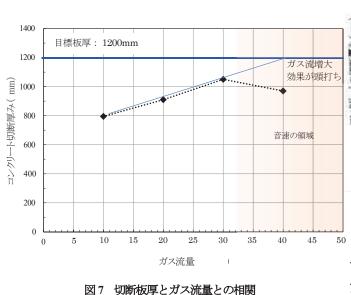



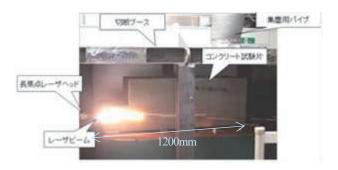
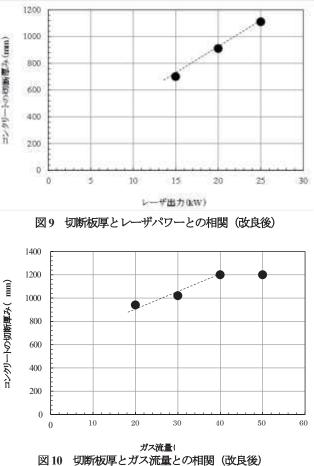
図6 切断板厚とレーザパワーとの相関

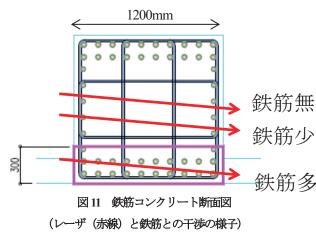
本試験結果をもとに、1200mm 切断に向け、切断パワ ー増大により生じる熱レンズ効果(焦点シフト)の対策 としてレーザヘッドの改良、および、溶融コンクリート の除去を効率改善のため、ガスノズル形状の改良を行な い、1200mm 切断の実証試験を行った。

3.3 1200mm 切断実証

1200 mm切断試験状況を図8に示す。熱レンズ効果による焦点シフト対策を実施することで、パワー増大とともに切断板厚が増大することが確認出来た(図9)。

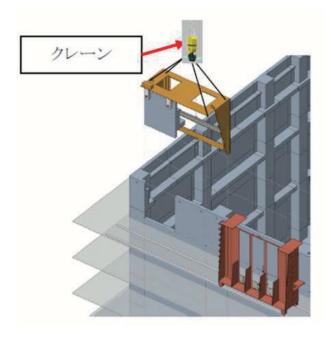
また、でガス流量増大とともに切断板厚が増大するこ とが確認され、板厚 1200mm の切断を実証することがで きた(図 10)。ガス流量 40(相対値)と 50 で、切断可能 板厚が同一なのは、コンクリート板厚 1200mm のためで ある。


図8 板厚 1200mm コンクリート切断の様子

3.4 コンクリート内部の鉄筋の影響

鉄筋コンクリートは内部に最大 φ40mm程度の鉄筋を 多数含んでいる。鉄筋の有無、本数によるレーザ切断へ の影響を調査した(図11)。切断位置によりコンクリート のみの部分もあり、また、3~4本同時に切断が必要な場 合もある。


鉄筋無しの場合は、速度 6mm/min で切断可能であった のに対して、鉄筋4本同時切断時には、切断速度が半分 程度に低下した。切断状況から、コンクリートと鉄の溶 融物(ドロス)が混ざり合うことで流れにくくなってい ることが切断速度低下の要因として考えられる。

4. レーザ切断システム

大型クレーンにて、レーザ切断ヘッドやレーザビーム ダンパを含む駆動装置、コンクリート切断片把持機構を 吊りながら施工。又、レーザ発振器、冷却装置や粉塵回 収装置等の周辺機器をコンテナ内に備えたシステムを検 討。

5. まとめ

1000mmを超える厚板コンクリート切断を実証する 鉄筋少 ことができた。また、本技術をもとに建屋切断解体の工 法および切断装置の実現の見通しを得た。レーザは制御 鉄筋多 性が良く、非接触で切断可能なため、機械の噛み込みが 生じない点が優れており、放射線量が高い、作業者が近 づきにくい場所の遠隔切断に適している。

> 他方、現時点では、ワイヤソーなどの既存工法に比べ て、単体での切断速度劣る。今回の試験結果から、切断 速度向上には、レーザ出力増大および、ガス流速の高速 化が有効であることが確認できた。本技術の実用化に向 けて、切断速度の高速化技術の開発を進める。

参考文献

- [1] 大出力レーザによるコンクリート切断に関する研究 その2,日本建築学会,大会学術講演概要集,1989
- [2] 大出力レーザによるコンクリート切断に関する研究 その2,日本建築学会,大会学術講演概要集,1989
- [3] レーザによるコンクリート切断研究,西松建設技報 (1984)
- [4] 異種材料切断能力調查試験(炉内構造物切断技術確 証試験)NUPEC((財)原子力発電技術機構) H6 年度報告書.