劣化メカニズムに基づく中性子束効果の検討

Mechanism－based discussion on flux effect to RPV embrittlement

長岡技術科学大学 村上 健太 Kenta Murakami Member

Abstract

＂Flux effects＂on irradiation embrittlement in reactor pressure vessel materials is discussed in detail considering the interaction between two cascade damage occurred nearby．When no nano－scale structure exists nearby the cascade damages，flux effect can be categorized into three physical phenomena related to different irradiation－induced defects interaction．Interaction between a cascade damage and nano－scale structures，such as solute atom clusters，is important to model the growth phase of these structures，and the importance of flux effect would be relatively lower than in their nucleation phase．

Keywords：reactor pressure vessels，irradiation embrittlement，radiation defects，cascade damage，diffusion， neutron flux effect

1．「照射損慯学」の成熟に向けた課題

工学者の吉川弘之 ${ }^{1)}$ によると，新しい学問領域は，実用的な視点に基づいて観察を行い，基本法則をアブダク ション（仮説形成）して演繹的に事象を記述する作業で ある。これには，基本法則の独立性を確保するに，視野 が覆う範囲を限定することが関係する。一方，学問の利用とは，基本法則の観察に基づくアブダクションにより，行動をアブダクションすることであり，行動は基本法則 の演繹的な帰結ではない。従って，学問の利用は，基本法則の外側へと学問の関係する領域を押し広げることに なる。現代社会の抱える問題（吉川いわく「現代の邪悪 なるもの」）の多くは，特定の学問を規範として行動を選択した結果が重畳することで，境界領域において矛盾が発生することの帰結であると吉川は指摘している。

領域間の独立性の問題は，研究対象としてマルチスケ ール性を有する現象を取り扱う場合にも重要である。「照射損傷学」は，実務においては，中性子照射下における原子炉材料の将来の状態を予測するために使われる ${ }^{2,3)}$ 。多くの研究者は，この学問が「視点の異なる二つ以上の学問領域を無理やりに接合したもの」であるという事実 を忘れがちである。照射劣化のモデル化のために特に重要なのが Lindhard の理論と，点欠陥の拡散理論である。

Lindhard の理論は，二つの原子を十分近接させたとき に，原子核同士のクーロン力が周辺の電子によって一部遮蔽されながらどのように相互に影響を与えるか記述す る。高エネルギー粒子を用いた散乱分光実験は強力な実験ツールであり，実務上は，照射による「はじき出し」 を定量化するために使用されている。

格子欠陥の拡散理論は，結晶中の孤立した格子欠陥（特

に点欠陥）の位置が，周辺原子の熱振動の結果としてラ ンダムに置き換わり，それに伴って材料中の物質移動が誘起されると考えて，濃度変化を拡散方程式に基づいて記述する。残留抵抗率など，欠陥数密度と相関性の高い物性値を照射や熱処理の条件を変えながら測定すること により知見を収集する。実務上は，照射によって導入さ れた照射欠陥が材質の局所変化を引き起こす挙動をモデ ル化するのに使用される。

前者に基づいて中性子照射された材料の挙動を演繹的 に記述するならば，最終的には高濃度（数パーセント程度）の多様な格子欠陥が，中性子が散乱されたあたりの狭い領域（数ナノメートル立方）に形成されることが導 かれる。これらの格子欠陥は複雑に相互作用しながら再結合して消滅し，最後には低濃度の孤立した欠陷になる だろう。そうすれば，低濃度の格子欠陥の移行が材料特性に与える影響を拡散理論に基づいて記述することが可能になる。

「照射損傷学」の不完全さは，「はじき出し」と「拡散」 の学問領域をつなぐ中間部分について，観察手法が未成熟であり，視点が覆う範囲を上手く定めることができて いないことによる。実用上は，認識論的な不確かさの存在を認めつつ，二つの理論を曖昧に接合して観察結果を説明することに成功している。本稿では，これらの境界領域が，照射劣化の中性子束依存性にどのような影響を与えるかを検討し，原子炬圧力容器の中性子照射脆化に対する考察を深める。さらに，最近の照射脆化研究の進展が中性子束効果に対する理解にどのような影響を与え るかを考察する。

2．「はじき出し」と「拡散」の連結に対する中性子束の直接的効果

まず一つの中性子がきれいな材料のある場所で散乱さ れることを考えよう。散乱から平均 t_{1} 秒間は，Lindhard の理論に基づくはじき出し連鎖が支配的な領域である。散乱位置の近傍は原子密度が低くなり，外周部に向かっ て原子密度の高い領域が波のように伝搬されていく。原子の運動エネルギーが泠却されると，それぞれ空孔リッ チ，格子間原子リッチな領域となる。運動エネルギーは波のように材料中を伝搬するので，格子間原子の形成位置は材料の方位や溶質原子の局所的な配置にも大きく影響される。こうした反応と並行して，近傍の欠陥同士の集合や再結合による欠陥の消滅が発生するが，これも平均 t_{2} 秒に完了する。これ以降に残留した照射欠陥は，材料の平均温度による原子振動に起因する熱拡散により周辺へと拡散して，ある時刻 t_{3} で再結合等により消滅する。

平均的な熱拡散に至るまでに要する時間は，$t_{l} \doteqdot 10^{-12} \mathrm{~s}$ ， $t_{2} \doteqdot 10^{-11} \mathrm{~s}$ 程度である ${ }^{4)}$ 。散乱断面積が高々 10 barn ，中性子束の範囲が，極端な加速照射までを仮定したとして 10^{8} $\sim 10^{14} \mathrm{n} / \mathrm{cm}^{2} \mathrm{~s}$ 程度であるとすると， 1 秒間に生じる平均的 な散乱は，ミクロ散乱断面積と中性子束の積で与えられ るから，原子当たり $10^{-15 \sim 9}$ 回程度である。一つの中性子散乱を起因とした連鎖反応が影響を与える領域は広め に見積もつて半径 100 nm 程度とすれば， $10^{8 \sim 9}$ 個の原子 が関係することになる。中性子散乱から平均的な熱拡散 に至るまでに要する時間がとても短いことを加味すると，原子炉圧力容器材で，二回のはじき出し連鎖が重畳する効果を考える必要はなさそうである。

従って，定量化されたはじき出し量と，平均的な熱拡散に移行する点欠陷量の比を欠陥性成功率 ξ と定義す れば，中性子照射によるはじき出し量（単位時間あたりの dpa）に を乗じた数の欠陥が平均的に拡散過程へと移行すると考えれば，「はじき出し」の世界と「熱拡散」の世界を連結することができるかもしれない。低温照射実験に基づいて様々な物質及び粒子の欠陥生成効率 ξ が求められている。数 MeV 程度の電子線照射では均質な点欠陥のみを導入するので $\xi=1$ となる。一方，高速中性子の場合は t_{l} から t_{2} にかけての事象の複雑さを反映す る形で ξ が 0.1 程度となることが多い。

中性子束と欠陥生成効率 ξ は独立だと考え，かつ照射欠陥が連続的に，かつ均質な空間分布で導入されると仮定すれば（この仮定は電子線照射実験では確実に正当化 できる），照射による微視的な変化を美しい反応速度論の

形へと定式化できる。ここでは，欠陥の拡散に伴って局所的な濃度変化が起こる効果，同種の欠陥同士が結合し て格子欠陥集合体をつくる効果，異種の欠陥が再結合し て照射劣化の効率を下げる効果が考慮されている。拡散理論から得られる基本的な考察には次のようなも のがある。
－原子力材料中に見られる照射欠陥集合体や析出物な どの微細組織の形成は拡散理論によってモデル化で きる。組織発達の傾向曲線が，積算照射量に対してど のようなべき乗則を取るか（通常は $1 / 4$ 乗あるいは $1 / 2$ 乗に従うことが多い）によって，形成メカニズムの違いを議論できる。
－中性子束が低いほど照射欠陥の再結合頻度が下がる ので，同じ積算照射量で比較した場合，微細組織は発達しやすい。
－中性子束が高いほど，及び／又は照射温度が低いほど，照射による微細組織の数密度は高くなる。
－中性子束が高いほど，及び／又は照射温度が低いほど，照射による微細組織のサイズは小さくなる。

結晶粒径が大きく中性子束の高いステンレス製炉内構造物では，欠陥形成挙動を時間的及び空間的に平均化して導かれた上記の考察が，微細組織の観察結果とかなり良 く一致する。

とはいえ，拡散理論に基づく規範的な反応速度式の定式化とは異なり，実際の中性子照射下における熱拡散可能な欠陥導入は不均質である。そこで，特に原子炉圧力容器に着目しながら，t_{2} から t_{3} に至る過程について少し詳 しく見ていこう。 t_{3} は点欠陷の拡散定数と，点欠陷を吸収する場所（シンク）までの距離等とに依存している。欠陥の拡散活性化エネルギーは種類毎に違っているが，鉄の場合 ${ }^{5)}$ ，大雑把には，格子間原子型の欠陥が結晶粒界 へとたどり着くのはマイクロ秒のレンジ，空孔型欠陥の場合はミリ秒のレンジだと考えれば良い。1回目の中性子散乱によって空孔が高濃度になっている結晶中で，新た な中性子散乱が起こる確率は，中性子束 ϕ ，結晶粒の体積 V ，中性子散乱断面積 σ ，原子数密度 N_{d} とすれば，おお よそ $\sigma \mathrm{VN}_{\mathrm{d}} \phi t_{3}$ で表される。欠陥の拡散定数を D とすると $\mathrm{V} \simeq\left(D t_{3}\right)^{3 / 2}$ なので，ここから 2 回の中性子散乱によって生 まれた欠陥同士が相互作用するには，どのくらいの中性子束が必要かを考察できる。
拡散活性化エネルギーが 0.3 eV 前後の欠陥では，材料試験炉の設計上の最大中性子束に相当する $10{ }^{14} \mathrm{n} / \mathrm{cm}^{2} レ$ ベルの照射においてのみ，二回の中性子散乱に起因する

影響の重畳を考慮する必要がある。PWRの監視試験材の中性子束はおおよそ $10^{11} \mathrm{n} / \mathrm{cm}^{2}$ 程度であり，このような
「速い」欠陥の「はじき出し」間相互作用は完全に無視 できる。一方，拡散活性化エネルギーが 0.7 eV 程度の「遅 い」欠陥の場合（空孔が結晶中の溶質原子に捕捉されな がらゆっくりと拡散する挙動に対応している），1回目の はじき出しで形成された欠陥が生き残っているらちに，次の欠陥が導入されえる。
はじき出し連鎖の重畳効果とは別に，照射による空孔 と熱空孔の重畳による中性子束効果も存在する。純鉄に おける空孔の形成エンタルピーは $1.8 \sim 2 \mathrm{eV}$ 程度とされて おり，軽水炉運転温度における熱空孔濃度は $10^{-17 \sim 15}$ 程度 に分布していると考えられる。この量は，PWR の原子灲容器にとって無視できるほど少ないが，中性子束が 10^{8} $/ \mathrm{cm}^{2}$ 程度となる BWR の監視試験片では，照射によって導入された熱拡散できる空孔の平均的な濃度と（総量と して）釣り合らかもしれない。つまり，同照射量で比較 した場合，きわめて中性子束の低い条件では，熱空孔の寄与分だけ照射劣化が嵩上げされる？

これまでの考察から，原子炬圧力容器の中性子照射脆化に寄与する微細組織が形成され始めた段階では，照射欠陥の熱拡散が支配的な物理プロセスになり得ること， ただし，微細組織の核形成ははじき出し連鎖後の空間的 かつ時間的に不均質な欠陥分布に律速されることが理解 できる。現象のモデル化においては，1回目のはじき出 し連鎖の後に（照射欠陥が相互作用しながら消滅してい く過程で）微細組織の核となる構造が偶然に形成されて生き残り，次のはじき出し連鎴によって発生した点欠陥 が核と反応し…，と微細組織がステップ状に成長するイ メージがベースになる。これに対する中性子束効果をま とめると，次のようになる。
1）中性子束の極めて高い材料試験炉では，異なるはじ き出し連鎖で形成された格子間原子型の照射欠陥同士が熱拡散により結合して，微細組織を作る可能性を考慮する必要がある。
2）材料試験炬から PWR程度の比較的中性子束が高い条件では，先行するはじき出し連鏤過程で導入され た空孔型欠陥と，その後のはじき出し連鎖過程で導入された格子間原子型欠陥とが対消滅する可能性 を考慮する必要がある。
3）中性子束の低いBWR 条件では，熱空孔の拡散によ る熱時効と照射誘起空孔の拡散効果とが重畳する する可能性を考慮する必要がある。

監視訳験データや材料訃験炉データを中性子束依存性に着目して整理すると，おおむむねる先の考察によって説明が可能になる。JEAC－4201 等の脆化予測式》（ETC：
Embrittlement trend curve）を用いて描かれる中性子束効果 の傾向曲線も，先の考察から予想される照射脆化の傾向 と大きく矛盾しない。ただし，照射欠陥の拡散活性化エ ネルギー自体が不均質さ由来の分布を持つので，現象が切り替わる中性子束レンジには， 1 桁程度の違いが生じ得 るものと考えた方が良い。

3．「はじき出し」と微細組織の関係

次に，積算照射量が多くなり，材料中にある程度の微細組織が形成されている状態を考えよう。微細組織とい っても様々なものがあるが，ここでは特に限定せずに，中性子が散乱した場所から距離Rに，立体角 Ω を与える微細組織が存在しているとする。
R が十分に大きいなら，中性子散乱から t_{2} 秒まで間，微細組織は何の影響も受けないだろう。ts秒までの間に照射欠陥が微細組織近傍に到達するなら，相互作用により微細組織の成長（あるいは山縮）が生じる。これらは熱力学的な考察と拡散理論で十分に記述可能な反応である。

逆に，Rが十分に小さければ微細組織ははじき出し連鎖反応の直撃を受けるが，微細組織が体系全体に占める割合が小さく，かつはじき出し量が 1 dpa を大きく下回 る条件下では，はじき出し連鎖の直撃が微細組織の発達挙動全体に与える影響は微々たるものである。原子炉圧力容器の照射脆化は少なくとも後者の条件を満たしてお り，はじき出し損傷の直撃は問題にならない。

丁寧な議㛚が必要なのは，Rが中程度の場合である。 はじき出し連鎖に伴って形成された原子密度の高い領域 は，t_{2} 秒までの間に格子間原子の波のようになって外側へ と伝搬していく ${ }^{88}$ 。この途上に微細組織が存在するなら，格子間原子の波と複雑な反応をするだろらの。大雑把に言 らと，空孔型の欠宿集合体と反応すれば対消滅が生じ，波も大きく減衰する。結果として，はじき出し連鎖の中心部分には空孔が多く取り残される。剛性率がマトリク スより小さな析出物の場合，内部に格子間原子型の欠陥 を取り込むことで全体の歪エネルギーを小さくする効果 が働く》。この現象も 1 回のはじき出し後に生じる再結合 を阻害して，熱拡散に至る空孔の量を増やす効果がある。 これらの現象は，拡散理論において，欠陥生成効率を微細組織の関数として変動させるか，形成した欠陥がすぐ に消减するように極端なシンク（点欠陥が消滅するサイ

ト）を照射量の関数として仮定するなどして，ある程度再現できるだろう。しかしながら，数式的な美しさをそ れなりに犠牲にすることは必要である。

ここまでの考察を照射脆化の問題に適用しよう。原子炉圧力容器の場合，格子間原子の波が減衰せずに伝搬す る距離は，転位ループの一次元運動から $10^{-8} \mathrm{~m}$ 程度と類推できる ${ }^{8)}$ 。主たる微細組織は溶質原子の局所的な濃化領域であり，これを現状では溶質原子クラスターと仮称し ている。溶質原子クラスターの量は巨視的な破壊靭性変化と良い相関を持つので，脆化の主要な原因であると同時に，照射脆化の微視的な指標として適当であろうと考 えられている。興味深いことに，積算照射量に二桁もの相違があるにも関わらず，BWR とPWR の溶質原子クラ スターはおおよそ $10^{23} \mathrm{~m}^{3}$ のレンジにあり，直径は 3 nm前後，組成もよく似ている。溶質原子クラスターを構成 する元素は，銅，ニッケル，マンガン，ケイ素などであ り，その結晶構造は十分良く分かっていない。ただし，組成から剛性率は鉄のマトリクスより小さくなることが予想されるので，格子間原子の波と捕捉して再結合を減 らす効果は否定できない。サイズと数密度から試算する と，格子間原子の波の少なくとも半分くらいは微細組織 に作用すると考えられる。従って，原子炉圧力容器中で は，微細組織の発達とともに，照射劣化に寄与できる欠陥生成量が加速的に増えていく可能性が高い。場合によ っては，溶質原子クラスターによる格子間原子の波の吸収と，格子間原子を消滅させるような空孔の熱拡散が交互に発生するような過程も考えられる。現在，こうした機構を実現するのに必要な剛性率の差異やクラスタサイ ズに関する検討に着手したところである。

以上の考察から，微細組織の数密度がある程度増加し てくると，はじき出しから熱拡散に至る $t_{1} \sim t_{2}$ 秒後の時間帯の材料挙動がより重要になることが分かる。先に考 えた通り，この挙動には中性子束効果が働かない。つま り，微細組織が成長する段階では，中性子束の違いは現象論的にはそれほど重要ではない。ただし，この考察は，監視試験データ等を整理するためのパラメータとして の中性子束の重要性を否定するものではない。

4．小括

本項で見た通り，はじき出しと拡散の中間領域の物理 を把握することは，中性子照射脆化を包括的に理解し，定量的なモデルとする上で重要である。この領域におけ る物理現象を実験的に観ることのできる数少ない道具の

一つが，イオン加速器と透過電子顕微鏡を連結した in－situ TEM である ${ }^{10)}$ 。発表では，この装置を使った最新の知見 の幾つかも紹介する予定である。
照射脆化に関する過去 10 年程度の研究の大半は，溶質原子クラスターの正体は何か，という問いに向けられて いた。まだ完全に結論が出た訳ではないが，溶質原子ク ラスターの形成が銅，ニッケル，マンガン，ケイ素など の化学ポテンシャルと強い関係性にあることから，金属間化合物かその先駆体であることは確かだろうと考えら れている。発表では，可能な限り最新の知見を取り纏め，中性子束効果に関する考察と結びつける予定である。

吉川は，領域を否定しつつ知識を体系的に利用する方法を模索した。同様に，学際的に「照射損傷学」を発展 させるためには，シンプルな基本法則によって将来の材料挙動を演繹的に導けるという誤解を否定し続ける必要 がある。対象としている事象の複雑さを把握するための取り組みを継続的に進めつつ，現象と関係する因子の幾 つかが変化したときの影響を予測し続けることが大切で ある。原子炉圧力容器の照射脆化への取り組みは，そう やって進められてきた。今後も同様に取り組まれ続ける ことを期待する。

謝辞

本研究の元となった考察は，中部電力原子力安全技術研究所公募研究「その場観察技術を用いた原子炉圧力容器材の照射影響評価」，及び科研費補助金「格子欠陥をプ ローブとしたその場観察と組合せ照射による照射欠陥の顕在化技術」において実施したものである。

参考文献

［1］吉川弘之，＂人工物工学の提唱＂， 1992 ．
www．race．u－tokyo．ac．jp／open／documents／Yoshikawa．pdf
［2］石野琹，＂照射損傷学＂，1979，東京大学出版会．
［3］G．S．Was，＂Fundamentals of Radiation Materials Science＂， Second Edition，Springer， 2016.
［4］K．Morishita，et．al．，J．Nucl．Mater 248 （1997） 400.
［5］S．Takaki，et．al．，Rad．Eff． 79 （1983） 87.
［6］N．Soneda，et．al．，J．Nucl．Mater 323 （2003） 169.
［7］A．C．Arokiam，et．al．，Phil．Mag． 87 （2007） 925.
［8］H．Abe，et．al．，J．Nucl．Mater． 323 （2003） 220.
［9］T．Hamaoka，J．Nucl．Mater． 399 （2010） 26.
［10］K．Murakami，et．al．，Nucl．Instrum．Meth．B 381 （2016） 67.

