電磁超音波共鳴法を用いた配管減肉の評価精度の検討

Study of evaluation accuracy of pipe-wall-thinning using electromagnetic acoustic resonance

東北大学	岩田 大輝	Daiki IWATA	Student Member
東北大学	武田 翔	Sho TAKEDA	Member
東北大学	内一 哲哉	Tetsuya UCHIMOTO	Member
東北大学	廣瀬 悠一	Yuuichi HIROSE	
東北大学	遊佐 訓孝	Noritaka YUSA	Member
東北大学	高木 敏行	Toshiyuki TAKAGI	Member

Abstract

Electromagnetic acoustic resonance (EMAR) method is used for online evaluation of pipe-wall-thinning. In this study, the thickness of the specimens corroded under various conditions is evaluated by EMAR. The thickness is estimated applying the superposition of n th compression (SNC) method to the signals obtained from EMAR. The error of thickness evaluation is investigated in view of thinning shape and the roughness caused by corrosion. As a result, it is suggested that the shape on the order of mm does not affect the error in estimated thickness.

Keywords: Electromagnetic Acoustic Transducer, Electromagnetic Acoustic Resonance, Flow Accelerated Corrosion, Superposition of *n*th Compression, Pipe-wall-thinning

1. 緒言

2004 年の美浜原子力発電所における配管破裂事故^{III} 等の配管の腐食による重大な事故を未然に防ぐため、配 管減肉を非破壊検査によって定期的に評価することで 設備の安全性と信頼性を保つことは重要である。一方で プラントには、高温等の極限環境下にある配管も存在す るため、配管のオンラインモニタリング技術が求められ る。

このような要求に応える技術として、電磁超音波共鳴 法(Electromagnetic Acoustic Resonance, EMAR)^[2]がある。 EMAR は電磁超音波探触子を用い、入射周波数を掃引 することで共鳴周波数を評価し、材料の肉厚を推定する 手法である。EMAR は非接触でかつ高精度に測定を行 えるため、高温環境下でも適用可能である。一方で、内 壁面が腐食している配管に対して配管外壁から EMAR を適用した場合、腐食部表面の凹凸形状による超音波の 乱反射等の要因で信号が複雑になり、管の肉厚を測定す ることが困難となる^[2]。このような複雑信号から共鳴周 波数を抽出する手法として、N 周期加算法(Superposition of *N* th Compression, SNC)がある。しかし、SNC を適用 した場合でも、実測値と推定値の間に大きな誤差が生じ る場合があり、この要因の解明が求められている。

そこで本研究では、腐食減肉試験片における実測値と EMAR による推定値の誤差が生じる要因を明らかにす るため、EMAR 信号に影響を与えると思われる腐食部 の表面形状を分析する。初めに、減肉幅・減肉厚さが異 なる 63 個の腐食試験片を作製し、各々において EMAR による減肉厚推定を行う。次に、同じ減肉幅の試験片で 減肉部肉厚の推定値と実測値との間に生じる誤差が大 きい試験片と小さい3ヶの試験片に対して、レーザー変 位計を用いて表面形状を測定し、表面形状と誤差との関 係を調査する。

2. EMAR および SNC を用いた減肉評価

本研究では、機械構造用炭素鋼 S50C を塩化第二鉄溶 液に 50℃ で浸漬することで、減肉幅・減肉厚さの異な る 63 種類の腐食試験片を作製した。各試験片の腐食減 肉部の幅はノギス、厚さはインジケータ(ミツトヨ、 ID-S1012X)を用いて測定した。大きく分けて 5.0, 10, 20, 30, 40 mm の 5 種類の減肉幅を持つ試験片を、それぞれ 12, 13, 11, 13, 14 個作製した。また、インジケータにより 測定した非腐食部の厚さはいずれの試験片も 9.52 mm であった。

図1に EMAR の実験装置の概略図を示す。パルサー レシーバー(RITEC-4000)により、送受信コイルに 100 µs のバースト波を 1.0 MHz から 4.0 MHz まで 0.01 MHz 刻 みで掃引しながら印加する。図2 に使用したレーストラ ック型送受信コイルを示す。コイルは単層で導線の直径 は 0.1 mm である。この送受信コイルの上に長さ 10 mm、 奥行き 20 mm、高さ 20 mm のサマリウムコバルト磁石 を 2 つ組み合わせて設置する。1 つの試験片に対して 4 回 EMAR 試験を行い、平均値を信号処理に用いる。

続いて、EMAR により取得した信号に対し、SNC を 適用する。SNC は入射周波数が整数倍の時に共鳴周波 数が周期的に現れることに着目した解析法である。基本 共鳴周波数f₁は、式(1)より求める。

Fig. 1 Experimental setup of EMAR measurement

Fig. 2 Coil dimension for EMAR

$$f_1 = \arg\max_{f} \left\{ \sum_{n} x(nf) \right\}$$
(1)

ここで、x(f)はスペクトル強度、nはn番目の共鳴ピーク、argmax は最大値を取る引数の値を示す。基本共鳴 周波数 f_1 のとき、試験片内に半波長の波が発生しているため、試験片内の横波速度Vを基本共鳴周波数の2倍で 割ることで、減肉部の厚さdを算出する。

3.実験結果及び考察

非減肉試験片に対して室温(20℃)で EMAR 試験を行い、計算した横波速度は 3275 m/s であった。以降の肉 厚計算にはこの横波速度を用いる。

63 種類の試験片に対し EMAR 試験結果に SNC を適 用したところ、56 種類の試験片において明瞭なピーク が得られた。これら56の試験片の、減肉部厚さの実測 値とEMAR 結果にSNCを適用することで得られた推定 値との関係を図3に示す。さらに、これらの試験片から 選出した、減肉幅が等しい3ヶの試験片A,B,Cそれぞ れの寸法と肉厚の推定値、および実測値と、これらの間 の誤差を表1に示す。試験片Bは実測値と推定値に大 きな誤差が生じた試験片であり、A と B は、肉厚の推 定値がほとんど同じだが推定値が異なる組み合わせ、B と C は、実測値は同じだが推定値に差異が見られた組 み合わせである。レーザー変位計を用いて取得した、A とBの減肉部の断面形状を比較した結果を図4(a)に示す。 曲率など、腐食部の形状は大きく異なっており、推定値 が一致する要因は見られなかった。次に B と C の減肉 部の断面形状を比較した結果を図4(b)に示す。形状は殆 ど一致しており、推定値と実測値の間の誤差が大きい要 因は確認できなかった。本研究で使用したレーザー変位 計の測定精度が100 µm であることから、EMAR による 肉厚の測定誤差は100 µm オーダーの形状の際によるも

のではないということが明らかになった。従って、表面の粗さなどのさらに小さいオーダーの形状変化の影響 に よ る も

- ~	<i>'</i> J				
Table. 1 Dimensions of specimens					
Specimen	А	В	С		
Corrosion width [mm]	10.3	11.1	10.5		
Measured thickness [mm]	8.27	7.39	7.28		
Estimated thickness [mm]	8.25	8.33	7.35		
Error [%]	0.3	12.8	0.8		

Measured Thickness [mm] Fig. 3 Relation between measured and estimated thickness

のと考えられる。

4.結言

本研究では、腐食減肉試験片における減肉部肉厚の実 測値と EMAR による推定値の誤差が生じる要因を明ら かにするため、EMAR 信号に影響を与えると思われる 減肉部の表面形状を分析し、誤差との関係を調査した。 その結果、肉厚推定における誤差は 100 µm オーダーよ りもさらに小さい表面粗さに起因することが示唆され た。当日は、粗さによる影響が強く表れる周波数を推定 するために、SNC 信号を分解し、それぞれについて検 討した結果を報告する予定である。

参考文献

- 片山正一郎、"関西電力美浜発電所3号機二次系配 管破損事故への対応"、火力原子力発電、Vol. 56、 No.1、2005、pp.4-11.
- [2] H. SUN, R. URAYAMA, T. UCHIMOTO, F. KOJIMA,T. TAKAGI, H. ABE, K. KOBAYASHI, "Effect of

Scaly Structure on the Measurement of Pipe Wall Thickness using EMAT", E-Journal of Advanced Maintenance Vol. 9-1, 2017, pp. 15-25