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Abstract  
The structural integrity of reactor pressure vessels (RPVs) is an important issue in the field of nuclear power 
plants. The RPV contains a reactor core, which is impossible to substitute. The pressurized thermal shock (PTS) 
loading is a critical issue in assessing the safety of RPV. The most severe situation takes places during cold water 
injection in the cold legs when the emergency core cooling system (ECCS) is operated due to LOCA. Under these 
circumstances, the PTS loading may lead the RPV to brittle fracture due to neutron irradiation. In the present 
study, we focus on the perspective of an RPV maintenance. A reference design of a four-loop RPV is applied, and 
five different cases of ECCS water injection proposals which are symmetric or asymmetric situations are 
considered. For each case, 3D-CFD and FEM analysis were performed to provide the SIF (KI) as a function of 
the position of RPV. By comparing KI values in RPV for these cases, the proposal is finally discussed, which will 
provide a deep insight on more appropriate maintenance of an RPV. 
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SIP 120 kg/s

Leg1 Case 1, Leg 1, 2
Case 2, Leg 1, 3 Case 3, Leg 1, 2, 
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Fundamental equation 
Unsteady compressible 
Navier-Stokes equation 

Turbulence model 

SST k-ω 
Buoyancy turbulence 

modification 

Discretization method Finite volume method 

Velocity-pressure coupling Coupled algorithm 

Time integration method Second order implicit 

 

 Mass Flow Rate, [kg/s] SIP,  
temp 
[K] 

Initial  
temp 
[K]  SIP, 

Leg 1 
SIP, 

Leg 2 
SIP, 

Leg 3 
SIP, 

Leg 4 
Case 1 120 0 0 0 

293 550 
Case 2 60 60 0 0 
Case 3 60 0 60 0 
Case 4 40 40 40 0 
Case 5 30 30 30 30 
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Simulation method FEM 

Welding method Submerged arc welding 

Welding model 
Gaussian distributed heat 

source 

Welding speed and radius 5 mm/s, 25 mm 

Heat input 35 kw 

Welding pass 5 
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௣(௜)ݎ  = ߨ16 ቆܭூ(௜)ܵ௬(௜)ቇଶ (1) 

 ܽ௘(௜) = ௣(௜)ݎ + ܽ(௜) (2) 
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େ୍ܭ  = 36.5 + 22.78exp [0.036(ܶ − ܴ ୒ܶୈ୘)] (3) 
 

T RTNDT

RTNDT 60 6.0 1019 n/cm2
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