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Predictive Maintenance of Dynamic Equipment Monitoring Signal using
Deep Learning

Kazuyuki DEMACHI Member
Satoshi TERAYAMA Non-Member

A time-series data future prediction algorithm using Long-Short Term Memory (LSTM), which is a kind of 
Regression Neural Network (RNN), has been proposed for the purpose of detecting early abnormality of 
monitoring signals of dynamic devices. An improvement for applying this algorithm to actual dynamic equipment 
monitoring signals was proposed, and an anomaly judgment method was also proposed.
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Figure 1 LSTM

Fig.1 Memory Unit Structure of LSTM
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Fig.2 Abnormality Judgment Threshold and Time

2.4
2006 6 15 8 39

5 B
12

6 1 0 0 6 15 8 30
10 2069

1 1000 1001 2069

10



3

3.1
10

LSTM MSE
Figure3 

(step/10min.) MSE (mm2) MSE
3

1,900 MSE

Fig.3 Mean squared error of predicted value of time-series 
data of turbine vibration sensors by LSTM
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Fig.4 Mean squared error of predicted value of normalized 
and noise-removed time-series data of turbine vibration 
sensors by LSTM
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Fig.5 Mean squared error of predicted value of normalized, 
noise-removed and extended time-series data of turbine 
vibration sensors by LSTM

Fig.6 Enlarged view of the intersection of the threshold line
with the mean squared error of predicted value of normalized, 
noise-removed and extended time-series data of turbine 
vibration sensors by LSTM
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Fig.7 Mean squared error of predicted value of normalized, 
noise-removed, extended and regularizedtime-series data of 
turbine vibration sensors by LSTM

Fig.8 Enlarged view of the intersection of the threshold line
with the mean squared error of predicted value of normalized, 
noise-removed, extended and regularizedtime-series data of 
turbine vibration sensors by LSTM
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Table 1 Comparison of anomaly detection time before 
turbine blade dropout

& 6/14 17:40 (839 )
6/14 16:40 (959 )
6/14 14:50 (1069 )
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